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Phylogenetic Trees

Definition

A leaf-labeled tree with n leaves is a tree with a distinguished vertex, called the root, and n
vertices with degree 1, called leaves, that are labeled from 1 to n.

Figure: Parts of a phylogenetic tree.
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Problem

Homology is imprecise!

Examine the topology to better describe this uncertainty.

Goal

Given a set of leaves, construct the phylogenetic treespace containing all possible trees with a
metric defined upon it. Then, study the distances and probability distribution across the
treespace to better understand these evolutionary relationships.
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Orthants

For a tree with n interior edges with lengths l1, l2, . . . ln, the coordinates of a tree in an orthant
are determined by (l1, l2, . . . ln). If there are n leaves and the tree is binary, then there are
n − 2 interior edges, and the orthants are (n − 2)-dimensional.

Figure: The 2-dimensional quadrant corresponding to a metric 4-tree, reproduced from [2].
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Rotations

Definition

A rotation (or nearest neighbor interchange) is a move which collapses an interior edge to zero
and then expands the resulting degree 4 vertex into an edge and two degree 3 vertices in a
new way.

Figure: Example of a tree rotation.
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Connecting Orthants

Each orthant represents a different rotation.
Note: non-binary trees are a degenerate case (just the edges).

Figure: Connected orthants for the treespace T4, reproduced from [2].
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CAT(0)

Figure: A chord in a triangle in X , and the corresponding chord in the comparison triangle in R2. The
triangle in X is at least as thin as a Euclidean triangle if d ≤ d ′ for all such chords. Figure from [1].

Definition

A metric space X is CAT(0) if:

between any two points there is a unique geodesic, and

every triangle is “at least as thin” as a Euclidean triangle.

Theorem (Billera 2001 [2])

Tn is a CAT(0) space.
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Geodesic and Cone Path

Since the tree space Tn is CAT(0), it follows by Gromov (1987) that there exists a unique
geodesic connecting any two points of Tn (nontrivial!)

Let us define the cone path:

Question: is the cone path the geodesic? (it’s so easy to compute)
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Internal Edge and Edge Partition

Figure: [4]The internal edge corresponding to partition {2, 3} ∪ {0, 1, 4, 5}

The partition corresponding to e3 is {23 | 0145}.
The partition corresponding to e2 is {234 | 015}.
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Is the Cone Path the Geodesic?

Bridson & Haefliger (1999) shows that for a CAT(0) space, the cone path between two
points T and T ′ is a geodesic iff the angle between is at least π.

Proposition: if no edge of T is compatible with any edge of T ′, then the cone path is
the geodesic.

Corollary: trees that share common edges (i.e., from two neighboring orthants) does not
have cone path as the geodesic, which makes sense.

Proposition: suppose T and T ′ have no edges in common, but a set of edges E of T and
a set of edges F of T ′ are compatible. If ||T (E )|| · ||T ′(E )|| − ||T/E || · ||T ′/F || > 0,
then the cone path is not the geodesic.
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Length of the Geodesic

If two trees are in the same orthant, or if the geodesic is the cone path, then it’s easy!

If not, we have the following:

Theorem

Let T and T ′ be binary trees with no edges in common. Suppose the edges {ei} of T and fi}
of T ′ can be ordered in such a way that Ei = {e1, · · · , ei} and Fi = {f1, · · · , fi} are
compatible for all i . If for all i < j we have |ei | · |fj | − |ej | · |fi | > 0, then the geodesic from T
to T ′ contains trees with edge sets Ei ∪ Fi for all i , and the geodesic from T to T ′ has length
the length of the vector

(|e1|+ |f1|, · · · , |en−2|+ |fn−2|).
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Example of Evolutionary Tree

Figure: Example of an Evolutionary Tree
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Example of an Evolutionary Tree

Figure: A sample model of evolution trees
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Computing Distances by Hand I: Euclidean Distances

(a) Model A (b) Model B
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Computing Distances by Hand I: Euclidean Distances

(a) Model A (b) Model B

Two models represent the same tree, so we only need to calculate the Euclidean distance. The
Model A has coordinate (30, 29) and the model B has coordinate (50, 20). The euclidean
distance would be

√
(50− 30)2 + (29− 20)2 ≈ 22.
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Computing Distances by Hand II: Cone Path

(a) Model A (b) Model C

One can check that for Model A and Model C no two edges are compatible, then we only need
to calculate the cone path. The Model A has coordinate (30, 29) and Model C has coordinate
(31, 25). Thus, the length of cone path is

√
302 + 292 +

√
312 + 252 ≈ 81.5
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Computing Distance by Hand III: Geodesic

Well, I am not going to do that by hand. Calculating the length of geodesic on CAT(0) is
actually NP-hard [3]!

R Package: ape, distory

code snippets

Figure: Code for calculating distances
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Larger Examples

Figure: Two trees with 15 leaves
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Larger Examples

Figure: Two trees with 15 leaves

Using computer codes presented above, we calculated that the distance is approximately 184.
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Key Takeaways

Leaf-labeled trees are important to biologists.

We embeds the set of phylogenetic trees into a CAT(0) space, which has a well-defined
notion of distance.

Having quantitative metric also allows biologists to statistically evaluate the credibility of
evolutionary models.
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Biological Problems Amenable to Mathematical Approaches

Biological Problems

The problem we have investigated is quite similar mathematically to other biological problems:

Protein Folding Mutagenics

Chromosomal translocations

Comparisons to determine the degree of biological similarity (of e.g. biomolecules, neural
structures)

Mathematical Characterization of These Problems

Embeddings of graph structures into metrizable topological groups

Simple automorphism groups of trees determined by their actions on finite subtrees
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Trees and the Theory of Free Groups

The following was the first result on the structure of discrete subgroups of p-adic groups:

Theorem (Ihara 1966 [5])

Every torsion-free subgroup of SL2(Qp) is a free group.

The proof was difficult and ad hoc. Trees allow us to systematize and simplify such proofs (i.e.
the tree of SL2 over the field Qp).

Upshot

To prove a group is free, show that it acts freely on a tree.
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Biological Application of Bass-Serre Theory: Step 1

Bass-Serre Theory

The study of groups acting by automorphisms on simplicial trees (c.f. Serre [5]).

Motivation: Understanding structure of certain algebraic groups (those whose Bruhat-Tits
buildings are trees)

Key Object of Study: Fundamental group of a graph of groups; a one-dimensional version
of orbifold theory

Reducing Biological Trees to Cell Complexes

Every connected graph such that each vertex has finite degree (e.g. biological trees) can
be viewed as a one-dimensional cell complex.

Correspondence between finitely generated groups and their associated cell complex.

Stalling’s Theorem characterizes the ends of finitely generated groups through the ends of
the cell complex associated to the corresponding graph.
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Biological Application of Bass-Serre Theory: Step 2

Apply Combinatorics to Achieve Biological Comparisons

Each biological difference is an action of a tree’s automorphism group.

Bass-Serre theory decomposes group actions as compositions of

Free products with amalgamation (pushouts in the category of groups as seen in the
Seifert-van Kampen Theorem)
HNN Extensions (group embeddings such that all isomorphic subgroups are conjugate)

Count the number of each type of automorphism and use it as a “distance” to predict
likelihood of biological relationships

Open Question

What are the biological meanings of amalgamated free products and HNN extensions?
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