Notes on real orientations

Yunhan (Alex) Sheng

November 29, 2023

Abstract

This is an ongoing project on the real orientations in the context of equivariant and chromatic homotopy theory. By a real orientation, we mean a map from $MU_{\mathbf{R}}$, the complex cobordism spectrum MU equipped with a C_2 -action by \mathbb{E}_{∞} -maps. It turns out

1 Motivation and overview

Equivariant foundations, why we care about real-orientations, what good does it do blah blah.

In the remainder of the section we give an outline of the seminal work by Hahn and Shi [HS20]. Their main result is the following theorem.

Theorem 1 ([HS20], 1.3). Let k be a perfect field of characteristic 2 and Γ a height-n formal group law over k. Denote by $E := E_{(k,\Gamma)}$ the corresponding Lubin-Tate theory. Let G be a finite subgroup of the Morava stabilizer group that contains the central subgroup C_2 . Then there is a G-equivariant map $N_{C_2}^G M U_{\mathbf{R}} \to E$.

The underlying spectrum of $MU_{\mathbf{R}}$ is MU, with a C_2 -action induced by complex conjugation on complex manifolds. The $MU_{\mathbf{R}}$ is sometimes referred to as the *real cobordism spectrum*. Recall that a map of commutative ring spectra $MU \rightarrow R$ determines a complex orientation on R. We call a C_2 -equivariant map $MU_{\mathbf{R}} \rightarrow R$ a *real orientation* on R. The theorem above implies that in particular, when $G = C_2$, there is a real orientation $MU_{\mathbf{R}} \rightarrow E_n$ on Morava *E*-theory of height $n \ge 1$.

The proof can be roughly divided into four steps:

(i) a construction of the non-equivariant, 2-periodic version of Johnson-Wilson theory E(n) as an \mathbb{A}_{∞} -*MUP*-algebra, starting from a map $X \to B^2 GL_1(MUP)$:

$$\operatorname{Spaces}_{/B^2GL_1(MUP)} \xrightarrow{\Omega} \mathbb{A}_{\infty}(\operatorname{Spaces}_{/BGL_1(MUP)}) \xrightarrow{Thom} \mathbb{A}_{\infty}(MUP\operatorname{-modules});$$

after K(n)-localizing we obtain E(n), which is a model for the Lubin-Tate theory associated to a height-*n* formal group law *defined over* **F**₂;

- (ii) equip the above construction with appropriate C_2 -action; in particular, if we start with a specific C_2 -equivariant map $X \to B^{\rho}GL_1(MUP)$, we obtain a spectrum $E_{\mathbf{R}}(n)$ with a C_2 -action via \mathbb{A}_{∞} -maps, which has E(n) as its underlying spectrum; after K(n)-localizing we get a C_2 -equivariant version of $\widehat{E(n)}$;
- (iii) show that there is a real orientation $MU_{\mathbf{R}} \to \widehat{E(n)}$ using the Goerss-Hopkins-Miller theorem;
- (iv) extend the real orientation above to that on the Lubin-Tate theory associated to a finite height formal group law *defined over any perfect field of characteristic* 2, and apply the HHR norm functor $N_{C_2}^G(-)$, citing results from [HM17] and [Mei18].

2 Units and Thom spectra

In this section we give an overview of the construction of units of a ring spectrum and the Thom spectrum functor, which is the starting point of the construction of the 2-periodic Johnson-Wilson theory E(n).

We first explain the construction of units in a \mathbb{E}_{∞} -ring spectrum A due to [MQRT77]. By units, we mean a spectrum gl_1A such that $\Omega^{\infty}gl_1A \simeq GL_1A$, where GL_1A is the *space of units* defined by the following pullback diagram

of (unpointed) spaces. Since *A* is an \mathbb{E}_{∞} -ring spectrum, GL_1A is a grouplike \mathbb{E}_{∞} -space, and since grouplike \mathbb{E}_{∞} -spaces model connective spectra, we have the adjunction

$$\Sigma^{\infty}_{+}\Omega^{\infty}$$
: ho((-1)-connected spectra) \leftrightarrows ho($\mathscr{S}[\mathbb{E}_{\infty}]$): gl_1

of categories enriched over the homotopy category. Here $\mathscr{S}[\mathbb{E}_{\infty}]$ is the category of \mathbb{E}_{∞} -ring spectra modeled by the model category of *C*-algebras, for some suitable \mathbb{E}_{∞} -operad *C*. To elaborate on the adjunction, we note that there is an adjoint pair $(\Sigma^{f}, \Omega^{\infty})$ between the category of (-1)-connected spectra and $\mathscr{T}[C]^{\times}$ that descends to an equivalence on the homotopy categories; there is also an obvious adjoint pair $(\Sigma^{\infty}_{+}, \Omega^{\infty})$ between $\mathscr{T}[C]$ and $\mathscr{S}[C]$. Now on the space level the functor GL_1 is right adjoint to the inclusion $\mathscr{T}[C]^{\times} \to \mathscr{T}[C]$, so we in fact have a sequence of adjunctions

$$\Sigma^{\infty}_{+}\Omega^{\infty}: (-1)\text{-connected spectra} \xrightarrow{\Sigma^{f}} \mathscr{T}[C]^{\times} \xrightarrow{\text{incl}} \mathscr{T}[C] \xrightarrow{\Sigma^{\infty}_{+}} \mathscr{I}[C]: gl_{1}$$

Note that the above adjunction is a vast generalization of the adjunction

 $\mathbf{Z}[-]$: abelian groups \leftrightarrows commutative rings : GL_1 .

For the Thom spectrum functor, there are three different definitions, and they are proven to be equivalent in [ABG⁺08] using Morita theory, which provides a characterization of continuous, homotopy-colimit preserving functors from $\Sigma^{\infty}_{+}GL_1R$ -modules to *R*-modules as a certain kind of extension of scalars functor. We first introduce the operadic (or, as described by [ABG⁺08] it, "neo-classical") definition due to Lewis and May. For technical details, we refer to the original treatment in the Chapter IX of [LMSM86]; see also [MS06], and [MQRT77]. Let \mathscr{I}_c be the category of finite dimensional real inner product spaces and linear isometric isomorphisms, which is symmetric monoidal under direct sum. Define an \mathscr{I}_c -space to be a continuous functor from \mathscr{I}_c to spaces. The category of of \mathscr{I}_c -spaces inherits the symmetric monoidal structure, and commutative monoids for this category model \mathbb{E}_{∞} -spaces. Commutative monoids *T* that satisfy an additional condition is called an \mathscr{I}_c -FCP (functor with Cartesian product), which gives rise to an \mathbb{E}_{∞} -space structured by the linear isometries operad. Examples to keep in mind include *O*, *U*, and *Spin*.

Consider the \mathscr{I}_c -FCP F given by taking $V \subset \mathbf{R}^{\infty}$ to the space F(V) of based homotopy selfequivalences of S^V , the one-point compactification of V. Passing over to the colimit under inclusion, we get $F(\mathbf{R}^{\infty}) = \operatorname{colim}_V F(V)$ which is a model for GL_1S , where S is the sphere spectrum. Furthermore, since F is a monoid, applying the levelwise two-sided bar construction yields a \mathscr{I}_c -FCP

$$V \mapsto BF(V) = B(*, F(V), *)$$

that provides a model for BGL_1S , the classifying space of stable spherical fibrations. Now readers can probably guess the construction for the \mathscr{I}_c -FCP model for EGL_1S , and the levelwise maps

$$EF(V) = B(*, F(V), S^V) \rightarrow B(*, F(V), *) = BF(V)$$

are a *universal* quasifibrations with fiber S^V . Given a map $f : X \to BF(\mathbf{R}^{\infty})$, by pulling back along subspaces $BF(V) \to BF(\mathbf{R}^{\infty})$ we get a filtration $\{X_V\}_V$ on X. Let $E(X_V) \to X(V)$ be the pullback of the universal quasifibration along $X_V \to BF(V)$.

Definition ([LMSM86]). The *V*-th space of the *Thom prespectrum* is defined to be the Thom space of $E(X_V) \to X(V)$, that is, $E(X_V)_+ \wedge_{F(V)_+} S^V$, obtained by collapsing the section induced from the basepoint inclusion $* \to S^V$. The spectrification is called the *Thom spectrum* of *f*.

In fact, any filtration of closed subspaces of *X* ordered by inclusion gives the same Thom spectrum (though not the same Thom prespectra), so we simply denote the Thom spectrum by *MF*, ignoring the data of a specific $f : X \to BF(\mathbf{R}^{\infty})$. It is proved in [LMSM86] that *MF* is given by

$$MF = \operatorname{colim}_V \Sigma^{-V} \Sigma^{\infty} MF(V),$$

and since levelwise MF(V) is modeled by the homotopy quotient $S^V/F(V)$, MF is stably equivalent to $S/F(\mathbf{R}^{\infty}) = S/GL_1S$.

The classical construction above focuses on the sphere spectrum and spherical fibrations. Works of Ando, Blumberg, Gepner, Hopkins, and Rezk [ABG⁺08], and May-Sigurdsson [MS06] generalized to construct a Thom spectrum associated to a map of spectra $\zeta : b \rightarrow \Sigma gl_1 R$, for R an \mathbb{E}_{∞} -ring spectrum. For obvious reasons, we shall write $bgl_1 R$ for $\Sigma gl_1 R$ and $Bgl_1 R$ for $\Omega^{\infty} bgl_1 R$. There is a map of cofiber sequences

where the left and bottom right squares are homotopy pullback squares.

Definition. The *R*-algebra Thom spectrum of ζ is the \mathbb{E}_{∞} -*R*-algebra $M\zeta$ that is the pushout in the following diagram of \mathbb{E}_{∞} -ring spectra:

That is, $M\zeta$ is given by the derived smash product $S \wedge_{\Sigma_{+}^{\omega}\Omega^{\infty}g}^{L} R$, or $\Sigma_{+}^{\omega}\Omega^{\infty}p \wedge_{\Sigma_{+}^{\omega}\Omega^{\infty}gl_{1}R}^{L} R$.

After looping down and viewing ζ as an infinite loop map $f : B \to BGL_1R$, we see that the Thom spectrum of f is the derived smash product $\Sigma^{\infty}_{+}P \wedge^{L}_{\Sigma^{\infty}_{+}GL_1R} R$. When one takes R = S so that the map $B \to BGL_1S$ classifies a stable spherical fibration, we recover the classical construction in [MQRT77] and [LMSM86].

This works all quite well when R is an \mathbb{E}_{∞} -ring spectrum. But in the case when R is \mathbb{A}_{∞} , we encounter difficulties due to the fact that GL_1R is not a topological group but rather only a grouplike \mathbb{A}_{∞} -space. This means that it is more delicate to forming "principal GL_1R -bundles". The solution, as provided by $[ABG^+08]$, is to adapt the operadic smash product so that on a subcategory of $\mathscr{T}[C]$ the monoids are precisely \mathbb{A}_{∞} -spaces. This is based on the theory of rigidified model of \mathbb{A}_{∞} -spaces as developed in the thesis of Andrew Blumberg.

Another solution that is cleaner but more abstract is the ∞ -categorical approach developed in $[ABG^+08]$ and $[ABG^+14]$.

For a sufficiently nice map $f : B \to BG$ (here *G* is a nice \mathscr{F}_c -FCP, such as *O* or *U*), Lewis proved in the Chapter IX of [LMSM86] that the associated Thom spectrum *Mf* has an enriched ring structure. In particular, operadic analysis shows that if *f* is an *n*-fold loop map, then *Mf* is an E_n -ring spectrum. Using general categorical arguments, the authors of [ACB19] were able to prove the same results for the generalized *R*-algebra Thom spectra in the ∞ -categorical sense. In particular, in our case at hand, by applying the Thom construction to a loop map $f : X \to B^2GL_1(MUP)$, we obtain an \mathbb{A}_{∞} -*MUP*-algebra *Mf*. In the remainder of the section, we shall explain the construction of this particular *f*, so that *Mf* is a model for the 2-periodic Johnson-Wilson theory E(n).

First note that for an \mathbb{E}_{∞} -ring spectrum *R*,

$$\pi_n(GL_1(R)) = \begin{cases} \pi_0(R)^{\times}, & n = 0\\ \pi_n(R), & n \ge 1 \end{cases}$$

To produce E(n) from MUP, the crudest intuition, obtained by staring at the respective homotopy groups, is to mod out certain elements v_{n+1}, v_{n+2}, \cdots . Luckily, taking the Thom spectrum of a nonzero $\alpha \in \pi_2(MUP) \cong \pi_3(BGL_1(MUP))$ is equivalent to the spectra-level of modding out α :

$$M\alpha \simeq \operatorname{cofib}(\Sigma^2 MUP \xrightarrow{\alpha} MUP) =: MUP/\alpha.$$

This interesting result is Theorem 4.1 from [ACB19]. Given two maps $\alpha_1, \alpha_2 : S^3 \rightarrow BGL_1(MUP)$, the infinite loop space structure on $BGL_1(MUP)$ produces a product map

$$(\alpha_1, \alpha_2): S^3 \times S^3 \to BGL_1(MUP) \times BGL_1(MUP) \to BGL_1(MUP)$$

whose Thom *MUP*-module is $M\alpha_1 \wedge_{MUP} M\alpha_2 \simeq MUP/(\alpha_1, \alpha_2)$. If we stipulate that a sequence $(\alpha_1, \alpha_2, \cdots)$ is regular in $\pi_*(MUP)$, then

$$\pi_*(MUP/(\alpha_1, \alpha_2, \cdots)) \cong \pi_*(MUP)/(\alpha_1, \alpha_2, \cdots).$$

A key observation is that if each α_i is a loop map, then by [ACB19] the associated Thom *MUP*-module can be refined to an \mathbb{A}_{∞} -*MUP*-algebra.

Proposition 1 ([HS20], 2.2). Each $\alpha_i : S^3 \to BGL_1(MUP)$ can be given the structure of a loop map.

Proof. We need to construct a map $\tilde{\alpha}_i : BS^3 \to B^2GL_1(MUP)$ such that $\Omega \tilde{\alpha}_i \simeq \alpha_i$. This is equivalent to proving the map

$$S^4 \hookrightarrow BS^3 \xrightarrow{\alpha_i} B^2 GL_1(MUP)$$

is adjoint to the map α_i . This follows from the fact that any map $S^4 \rightarrow B^2 GL_1(MUP)$ factors through BS^3 , since $BS^3 \simeq \mathbf{H}P^{\infty}$ has an even cell decomposition

$$S^4 = Y_1 \rightarrow Y_2 \rightarrow \cdots \rightarrow BS^3$$
, where $\begin{array}{c} S^{4n-1} \longrightarrow Y_{n-1} \\ \downarrow & \downarrow \\ D^{4n} \longrightarrow Y_n \end{array}$

is a pushout diagram. The obstruction to factoring through Y_n lies in $\pi_{4n-1}(B^2GL_1(MUP)) \cong \pi_{4n-3}(MUP)$, which is zero since MUP is even periodic.

Now it only remains to choose an appropriate regular sequence $(\alpha_1, \alpha_2, \cdots)$ such that the K(n)-localization of $MUP/(\alpha_1, \alpha_2, \cdots)$ is precisely the Lubin-Tate theory associated to a formal group law of height *n* over **F**₂. This is a simple computation on the level of homotopy groups and is explained in detail in Lemma 2.3 of [HS20]. In short, feeding our handcrafted $B^2GL_1(MUP)$ -space

 $(\tilde{\alpha}_1, \tilde{\alpha}_2, \cdots) : BS^3 \times BS^3 \times \cdots \to B^2GL_1(MUP)$

to the machine produces for us the desired Lubin-Tate theory. This construction has the benefit of being able to be upgraded to the equivariant setting, to which we now turn attention.

3 Equipping the *C*₂-action

In this section we summarize the procedure in Section 3 and 4 of [HS20] where the previous construction will be equipped with an appropriate C_2 -action.

Let MonCat_{*Lax*} be the category of monoidal categories and lax monoidal functors. Remark 4.1.1.7 of [Lur18] describes a C_2 -action, called *rev*, on MonCat_{*Lax*}: if (C, \otimes) is a monoidal category, then (C_{rev}, \otimes_{rev}) has the same underlying category as C but the opposite \otimes -structure. A homotopy fixed point for *rev* is a monoidal category (C, \otimes) equipped with a coherent equivalence $C \simeq C_{rev}$. Such a (C, \otimes) is called a category *with involution*, which is different from a homotopy fixed point for the trivial C_2 -action on MonCat_{*Lax*}. There is an induced C_2 -action on \mathbb{A}_{∞} -algebra objects $\mathbb{A}_{\infty}(C)$ in C, with the property that $\mathbb{A}_{\infty}(C)$ is equivalent to $\mathbb{A}_{\infty}(C_{rev})$, the *opposite algebra*. We referred to this C_2 -action on $\mathbb{A}_{\infty}(C)$ the *op* action, and write $\mathbb{A}_{\infty}^{\sigma}(C)$ to emphasize the action.

Now we specialize to our case of interest. Take C to be the category Spaces of (pointed) spaces. An \mathbb{A}_{∞} -space *X* with involution is a homotopy fixed point for the *op* action on $\mathbb{A}_{\infty}^{\sigma}$ (Spaces). Then the monoidal overcategory Spaces_{/X} is also equipped with involution.

Denote the sign representation of C_2 by σ and the 2-dimensional regular representation by ρ . In the C_2 -equivariant setting, we are more interested in Ω^{σ} , based maps from the representation spheres S^{σ} , instead of the ordinary loop space Ω . There are now two different equivalences

Therefore, if *X* is a grouplike \mathbb{A}_{∞} -space with involution, then there exists a connected space $B^{\sigma}X$ with trivial C_2 -action such that $\Omega^{\sigma}B^{\sigma}X \simeq X$. Thus, Ω^{σ} is a C_2 -equivariant functor

$$\Omega^{\sigma}$$
: Spaces_{/B^{\sigma}X} $\rightarrow \mathbb{A}^{\sigma}_{\infty}(\text{Spaces}_{/X})$,

sharing the same underlying functor as Ω . Then, Hahn and Shi make the observation that the C_2 -action on $\Omega^{\sigma}(X)$ for any C_2 -space X is given by precomposing with the the complex conjugation action on S^1 and postcomposing with the C_2 -action on X.

In our present case, we want a good C_2 -action on MUP. This requires a more geometric interpretation of the periodic complex bordism spectrum MUP. Recall that MUP can be constructed as a homology theory using the Landweber exactness theorem by formally inverting *u*, an element in degree 2:

$$MUP_*(X) := MU_*[u^{\pm 1}] \otimes_{MU_*} MU_*(X).$$

Alternatively, invoking techniques from Chapter V of [EKMM97], the homotopy ring map that forces $\pi_*(MUP)$ to be $\pi_*(MU)[u^{\pm 1}]$ equivalently produces MUP as a spectrum. In [HS20] the authors describes MUP as arising as the Thom spectrum of the complex *J*-homomorphism. The complex conjugation by infinite loop maps on $BU \times \mathbb{Z}$ thus gives the desired C_2 -action on MUP by E_{∞} -ring maps. This in turn induces C_2 -actions by monoidal functors on the category of MUP-modules and Spaces_{/BGL1}(MUP).

Combining the discussion above, we have successfully set up the equivariant machinery, that is, a C_2 -equivariant diagram (in the homotopy fixed point category of MonCat_{Lax} with respect to the *rev* action)

$$\operatorname{Spaces}_{/B^{\rho}GL_{1}(MUP)} \xrightarrow{\Omega} \mathbb{A}^{\sigma}_{\infty}(\operatorname{Spaces}_{/B^{\sigma}GL_{1}(MUP)}) \xrightarrow{Thom} \mathbb{A}^{\sigma}_{\infty}(MUP\operatorname{-modules}),$$

where B^{ρ} is our notation for BB^{σ} . Note that we sometimes write $MU_{\mathbf{R}}P$ for spectrum MUP equipped with the C_2 -action. Now what remains is to construct a specific $B^{\rho}GL_1(MUP)$ -space with underlying map of spaces

$$BS^3 \times BS^3 \times \cdots \rightarrow B^2GL_1(MUP)$$

just like before, such that feeding it into the machine above produces the C_2 -equivariant version of E(n), the 2-periodic Johnson-Wilson theory.

Upon reviewing our construction in the non-equivariant case, we first need to understand the quaternionic projective space $\mathbf{H}P^{\infty}$ as a model of $B^{\sigma}S^{\rho+1}$, C_2 -equivariantly. This is Proposition 4.2 of [HS20]. Firstly, there is a C_2 -even cell decomposition on $\mathbf{H}P^{\infty}$ due to Mike Hopkins, where $\mathbf{H}P^{\infty}$ arises as a filtered colimit

$$S^{2\rho} = Y_1 \to Y_2 \to \dots \to \mathbf{H}P^{\infty}, \text{ where } \begin{array}{c} S^{2n\rho-1} \longrightarrow Y_{n-1} \\ \downarrow \qquad \qquad \downarrow \\ * \longrightarrow Y_n \end{array}$$

is a homotopy pushout square of C_2 -spaces. The C_2 -action on $\mathbf{H}P^{\infty}$ is given by conjugation by *i*:

$$[z_0:z_1:\cdots] \mapsto [iz_0i^{-1}:iz_1i^{-1}:\cdots].$$

The expression $i(a + bi + cj + dk)i^{-1} = a + bi - cj - dk$ tells us that the C_2 -cells attached are multiples of 2ρ . Under this action, $\mathbb{C}P^{\infty}$ sits as a fixed point inside $\mathbb{H}P^{\infty}$. The C_2 -equivariant map $S^{2\rho} \to \mathbb{H}P^{\infty}$ given by the cell decomposition lifts the non-equivariant map $S^4 \to BS^3$, and gives a map $f : S^{\rho+1} \to \Omega^{\sigma}\mathbb{H}P^{\infty}$ of C_2 -spaces which is an equivalence of underlying non-equivariant spaces. Hahn and Shi show that f is in fact a C_2 -equivalence by checking that it is an equivalence on C_2 -fixed points. To do that we first write f as the composite of the unit map $S^{\rho+1} \to \Omega^{\sigma}\Sigma^{\sigma}S^{\rho+1}$ and Ω^{σ} applied to $S^{2\rho} \to \mathbb{H}P^{\infty}$. We then form the following commutative diagram of C_2 -fixed point:

We shall compute $(\Sigma^{\sigma}S^{\rho+1})^{C_2}$ and $(\Omega^{\sigma}\mathbf{H}P^{\infty})^{C_2}$ and find them both equivalent to S^2 , so that maps 4 and 5 are inclusions into $\mathbb{C}P^{\infty}$. We further deduce that $2 \circ 1$ is an equivalence, so that by commutativity $3 \circ 1$ is also an equivalence, which is what we want. Indeed, since $\mathbb{C}P^{\infty} \to \mathbb{H}P^{\infty}$ is the map $BS^1 \to BS^3$, its fiber $(\Omega^{\sigma}\mathbf{H}P^{\infty})^{C_2}$ is $S^3/S^1 \simeq S^2$. On the other hand, for any C_2 -space X, the composite $X \to \Omega^{\sigma}\Sigma^{\sigma}X \to \Sigma^{\sigma}X$, where the second map is obtained by sending $f: S^{\sigma} \to \Sigma^{\sigma}X$ to $f(S^0)$, induces an equivalence $X^{C_2} \simeq (\Sigma^{\sigma}X)^{C_2}$ on C_2 -fixed points, which implies that $2 \circ 1$ is an equivalence.

As a corollary of the above discussion, the exact same argument as in Proposition 1 shows that the obstruction of any map $S^{2\rho} \rightarrow B^{\rho}GL_1(MU_{\mathbf{R}}P)$ factoring through $B^{\sigma}S^{\rho+1}$ lies in

$$\pi_{2n\rho-1}(B^{\rho}GL_1(MU_{\mathbf{R}}P)) \cong \pi_{(2n-1)\rho-1}(MU_{\mathbf{R}}P),$$

which is zero by the computation in [HK01]. Now, by choosing an analogous regular sequence

$$(\alpha_1, \alpha_2, \cdots) : B^{\sigma} S^{\rho+1} \times B^{\sigma} S^{\rho+1} \times \cdots \to B^{\rho} GL_1(MU_{\mathbf{R}}P)$$

as in the non-equivariant setting and applying the Ω^{σ} and the Thom spectra functor, we obtain a homotopy fixed point of $\mathbb{A}_{\infty}^{\sigma}(MUP\text{-modules})$, which we denote by $E_{\mathbf{R}}(n)$. The underlying \mathbb{A}_{∞} ring spectrum of $E_{\mathbf{R}}(n)$ is of course the 2-periodic version of Johnson-Wilson theory E(n), but $E_{\mathbf{R}}(n)$ comes with an involution $E(n) \simeq E(n)^{op}$ by \mathbb{A}_{∞} -ring maps that lifts the C_2 action on E(n)by complex conjugation.

We are almost ready to prove the main theorem. Denote by $\widehat{E(n)}$ the K(n)-localization of $E_{\mathbf{R}}(n)$. We now have a Galois C_2 -action by involution on the Morava *E*-theory associated to a height-*n* formal group law defined over F_2 . However, it is not a priori clear that this action is given by the real orientation, that is, is compatible with the C_2 -equivariant map from $MU_{\mathbf{R}}$. We now prove that it is indeed the case, using the Goerss-Hopkins-Miller theorem.

Proposition 2 ([HS20], 1.6). *The spectrum* E(n) *with its central Galois* C_2 *-action, is real oriented, i.e., receives a* C_2 *-equivariant map from* MU_R .

Proof. Let C_1 be the category of all spectra equivalent to E(n) and equivalences between them. Let C_2 (resp. C_3) be the category of \mathbb{A}_{∞} -ring spectra (resp. \mathbb{E}_{∞} -ring spectra) with $\widehat{E(n)}$ as underlying

spectrum, and equivalences between them. The equivariant sequence of forgetful functors $C_3 \rightarrow C_2 \rightarrow C_1$ comes from the sequence

$$\mathbb{E}_{\infty}(\text{Spectra}) \to \mathbb{A}_{\infty}^{\sigma}(\text{Spectra}) \to \text{Spectra},$$

where $\mathbb{E}_{\infty}(\text{Spectra})$ and Spectra are equipped with trivial C_2 -action. A map of categories with C_2 action is an equivalence if and only if the underlying non-equivariant functor is an equivalence of non-equivariant categories. By the Goerss-Miller-Hopkins theorem, the map $\mathcal{C}_2 \rightarrow \mathcal{C}_1$ is an equivalence; they are equivalent to $B\mathbb{G}_n$, where \mathbb{G}_n is the Morava stabilizer group. Thus, any homotopy fixed-point of \mathcal{C}_2 is uniquely lifted to one of \mathcal{C}_3 , and in particular, the C_2 -action on $\widehat{E(n)}$ via \mathbb{A}_{∞} -involutions has a unique lift to a C_2 -action by \mathbb{E}_{∞} -automorphisms, which is the data of a map $BC_2 \rightarrow B\mathbb{G}_n$, or equivalently, $C_2 \rightarrow \mathbb{G}_n$. question

proof of Theorem 1. We need to show that there is a real orientation on the Lubin–Tate theory $E_{(k,\Gamma)}$ associated to any finite height formal group law Γ over any perfect field k of characteristic 2, not just \mathbf{F}_2 . In general, there is a map $E_{(k,\Gamma)} \rightarrow E_{(\overline{k},\overline{\Gamma})}$, where $\overline{\Gamma}$ is the pushforward of Γ/k to the algebraic closure $\overline{\Gamma}/\overline{k}$. Since any two height-n formal groups over an algebraically closed field are isomorphic, Γ is isomorphic to the Honda formal group defined over \mathbf{F}_2 , which by Proposition 2 is real oriented. A computation shows that $\pi_{*\rho}^{C_2} E_{(\overline{k},\overline{\Gamma})}$ is a copy of the non-equivariant homotopy group $\pi_{2*}E_{(\overline{k},\overline{\Gamma})}$, so that $E_{(\overline{k},\overline{\Gamma})}$ is a free $E_{(k,\Gamma)}$ -module. Thus, since $\pi_{*\rho-1}^{C_2}E_{(\overline{k},\overline{\Gamma})} = 0$, so is $\pi_{*\rho}^{C_2}E_{(k,\Gamma)}$, i.e., the C_2 -equivariant spectrum $E_{(k,\Gamma)}$ is even. Lemma 3.3 from [HM17] says that every such spectrum is real orientable. Finally, if G is a finite subgroup of G_n containing C_2 as a central subgroup, then we can leverage the Hill-Hopkins-Ravenel norm functor $N_{C_2}^G(-)$ and get a sequence of G-equivariant homotopy ring maps

$$N_{C_2}^G(MU_{\mathbf{R}}) \to N_{C_2}^G(E_{(k,\Gamma)}) \to E_{(k,\Gamma)}.$$

4 Applications to computation

References

[ABG⁺08] g

[ABG⁺14] f

[ACB19] Omar Antolín-Camarena and Tobias Barthel. A simple universal property of Thom ring spectra. J. Topol., 12(1):56–78, 2019.

[EKMM97] you know

- [HS20] Jeremy Hahn and XiaoLin Danny Shi. Real orientations of Lubin-Tate spectra. *Invent. Math.*, 221(3):731–776, 2020.
- [HM17] Michael A. Hill and Lennart Meier. The *C*₂-spectrum Tmf₁(3) and its invertible modules. *Algebr. Geom. Topol.*, 17(4):1953–2011, 2017.
- [HK01] Po Hu and Igor Kriz. Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence. *Topology*, 40(2):317 – 399, 2001.

[LMSM86] L. G. Lewis, Jr., J. P. May, M. Steinberger, and J. E. McClure. Equivariant stable homotopy theory, volume 1213 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986.

[Lur18]

- [MQRT77] J. P. May. \mathbb{E}_{∞} ring spaces and \mathbb{E}_{∞} ring spectra. Springer-Verlag, Berlin, 1977. Lecture Notes in Mathematics, Vol. 577.
- [MS06] J. P. May and J. Sigurdsson. Parametrized homotopy theory, volume 132 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2006.
- [Mei18] Lennart Meier. Topological modular forms with level structure: decompositions and duality. *arXiv preprint arXiv:1806.06709*, 2018.