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Abstract

This is an ongoing project on the real orientations in the context of equivariant and chro-
matic homotopy theory. By a real orientation, we mean a map from MUy, the complex cobor-
dism spectrum MU equipped with a Cy-action by Ec-maps. It turns out

1 Motivation and overview

Equivariant foundations, why we care about real-orientations, what good does it do blah blah.

In the remainder of the section we give an outline of the seminal work by Hahn and Shi [ I
Their main result is the following theorem.

Theorem 1 ([ 1, 1.3). Let k be a perfect field of characteristic 2 and I a height-n formal group law over
k. Denote by E := Er the corresponding Lubin-Tate theory. Let G be a finite subgroup of the Morava

stabilizer group that contains the central subgroup Cy. Then there is a G-equivariant map NCG2 MUR — E.

The underlying spectrum of MUg is MU, with a Cz-action induced by complex conjugation on
complex manifolds. The MUp is sometimes referred to as the real cobordism spectrum. Recall that a
map of commutative ring spectra MU — R determines a complex orientation on R. We call a C,-
equivariant map MUR — R a real orientation on R. The theorem above implies that in particular,
when G = C,, there is a real orientation MUg — E,, on Morava E-theory of height n > 1.

The proof can be roughly divided into four steps:

(i) a construction of the non-equivariant, 2-periodic version of Johnson-Wilson theory E(n) as
an A-MUP-algebra, starting from a map X — B2GL;(MUP):

Thom, A, (MUP-modules);

9)
Spaces  pagp, (mup) — A00(Sp""ceS/BGLI(Mup))
after K(n)-localizing we obtain E/(n\), which is a model for the Lubin-Tate theory associated
to a height-n formal group law defined over Fy;

(ii) equip the above construction with appropriate C;-action; in particular, if we start with a
specific Cy-equivariant map X — BPGL;(MUP), we obtain a spectrum Eg(n) with a Cp-
action via A-maps, which has E(n) as its underlying spectrum; after K(n)-localizing we

—

get a Cy-equivariant version of E(n);

(iii) show that there is a real orientation MUg — E/(n\) using the Goerss-Hopkins-Miller theorem;

(iv) extend the real orientation above to that on the Lubin-Tate theory associated to a finite height
formal group law defined over any perfect field of characteristic 2, and apply the HHR norm
functor NCG2 (—), citing results from [ ]and [ ].



2 Units and Thom spectra

In this section we give an overview of the construction of units of a ring spectrum and the Thom
spectrum functor, which is the starting point of the construction of the 2-periodic Johnson-Wilson
theory E(n).

We first explain the construction of units in a Ee-ring spectrum A due to [ ]. By units, we
mean a spectrum gl; A such that O*gly A ~ GL; A, where GL; A is the space of units defined by the
following pullback diagram

GL1A —— Q%A

! l

(7'[0A) X —_— 7T()A

of (unpointed) spaces. Since A is an Ee-ring spectrum, GL; A is a grouplike [E-space, and since
grouplike [E.-spaces model connective spectra, we have the adjunction

230 :ho((—1)-connected spectra) = ho([Ex)) : gl

of categories enriched over the homotopy category. Here .’ [[E,] is the category of [E..-ring spectra
modeled by the model category of C-algebras, for some suitable E..-operad C. To elaborate on the
adjunction, we note that there is an adjoint pair (%, Q) between the category of (—1)-connected
spectra and .7 [C]* that descends to an equivalence on the homotopy categories; there is also an
obvious adjoint pair (X%, Q) between .7 [C| and .’[C]|. Now on the space level the functor GL;
is right adjoint to the inclusion .7 [C]* — 7[C], so we in fact have a sequence of adjunctions

b incl X
2P0O% : (—1)-connected spectra & J[C]* —— - TICl —= - FC|:gh
a~ GL, a

Note that the above adjunction is a vast generalization of the adjunction
Z[—] : abelian groups = commutative rings : GL;.

For the Thom spectrum functor, there are three different definitions, and they are proven to be
equivalent in [ ] using Morita theory, which provides a characterization of continuous,
homotopy-colimit preserving functors from X GL;R-modules to R-modules as a certain kind of
extension of scalars functor. We first introduce the operadic (or, as described by [ lit, “neo-
classical”) definition due to Lewis and May. For technical details, we refer to the original treatment
in the Chapter IX of [ ]; see also [ ], and [ ]. Let .Z be the category of finite
dimensional real inner product spaces and linear isometric isomorphisms, which is symmetric
monoidal under direct sum. Define an .#;-space to be a continuous functor from ., to spaces. The
category of of .7 -spaces inherits the symmetric monoidal structure, and commutative monoids
for this category model [E-spaces. Commutative monoids T that satisfy an additional condition
is called an .#-FCP (functor with Cartesian product), which gives rise to an E-space structured
by the linear isometries operad. Examples to keep in mind include O, U, and Spin.

Consider the .#-FCP F given by taking V' C R® to the space F(V) of based homotopy self-
equivalences of SV, the one-point compactification of V. Passing over to the colimit under in-
clusion, we get F(R*) = colimy F(V') which is a model for GL;S, where S is the sphere spectrum.
Furthermore, since F is a monoid, applying the levelwise two-sided bar construction yields a .7-
FCP

V — BF(V) = B(x, F(V), )
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that provides a model for BGL1S, the classifying space of stable spherical fibrations. Now readers
can probably guess the construction for the .#.-FCP model for EGL;S, and the levelwise maps

EF(V) = B(x,F(V),S") — B(x,F(V),*) = BE(V)

are a universal quasifibrations with fiber SV. Given a map f : X — BF(R®), by pulling back along
subspaces BF(V) — BF(R®) we get a filtration { Xy }y on X. Let E(Xy) — X(V) be the pullback
of the universal quasifibration along Xy — BF(V).

Definition ([ ). The V-th space of the Thom prespectrum is defined to be the Thom space
of E(Xy) — X(V), thatis, E(Xv)+ Apv), S V, obtained by collapsing the section induced from the
basepoint inclusion * — S". The spectrification is called the Thom spectrum of f.

In fact, any filtration of closed subspaces of X ordered by inclusion gives the same Thom spectrum
(though not the same Thom prespectra), so we simply denote the Thom spectrum by MF, ignoring
the data of a specific f : X — BF(R®). It is proved in [ ] that MF is given by

MF = colimyZ~VE®MF(V),

and since levelwise MF (V) is modeled by the homotopy quotient S¥ /F(V), MF is stably equiva-
lentto S/F(R*®) = §/GL4S.

The classical construction above focuses on the sphere spectrum and spherical fibrations. Works of
Ando, Blumberg, Gepner, Hopkins, and Rezk [ ], and May-Sigurdsson [ ] generalized
to construct a Thom spectrum associated to a map of spectra ¢ : b — XgiR, for R an E-ring
spectrum. For obvious reasons, we shall write bgl R for £¢/1R and BgliR for (0*°bgliR. There is a
map of cofiber sequences

iy —1
g=x"1 (s ghR ——— ghR

! | |

* p eghiR >~ x »

| |

b — bghR

where the left and bottom right squares are homotopy pullback squares.
Definition. The R-algebra Thom spectrum of  is the E-R-algebra M( that is the pushout in the

following diagram of E-ring spectra:

0¥ — TPO®ghR —< 5 R

| ) |

S =XF0% —— 0% —— M(
That is, M is given by the derived smash product S /\éioooo ¢ Ror Z20%p /\é‘fﬂ“’ ahr R

After looping down and viewing ¢ as an infinite loop map f : B — BGL1R, we see that the Thom
spectrum of f is the derived smash product 5P /\éofGL1 r R. When one takes R = S so that the
map B — BGL;S classifies a stable spherical fibration, we recover the classical construction in

[ land [ ].



This works all quite well when R is an Eq-ring spectrum. But in the case when R is A, we en-
counter difficulties due to the fact that GL; R is not a topological group but rather only a grouplike
A-space. This means that it is more delicate to forming “principal GL;R-bundles”. The solu-
tion, as provided by [ ], is to adapt the operadic smash product so that on a subcategory
of 7[C] the monoids are precisely Aq-spaces. This is based on the theory of rigidified model of
A-spaces as developed in the thesis of Andrew Blumberg.

Another solution that is cleaner but more abstract is the co-categorical approach developed in
[ ]and [ 1.

For a sufficiently nice map f : B — BG (here G is a nice .%-FCP, such as O or U), Lewis proved in
the Chapter IX of [ ] that the associated Thom spectrum Mf has an enriched ring struc-
ture. In particular, operadic analysis shows that if f is an n-fold loop map, then Mf is an E,-ring
spectrum. Using general categorical arguments, the authors of [ ] were able to prove the
same results for the generalized R-algebra Thom spectra in the co-categorical sense. In particular,
in our case at hand, by applying the Thom construction to a loop map f : X — B2GL;(MUP), we
obtain an A-MUP-algebra Mf. In the remainder of the section, we shall explain the construction
of this particular f, so that Mf is a model for the 2-periodic Johnson-Wilson theory E(n).
First note that for an E-ring spectrum R,
7T0(R) x , n= 0
7y (GL1(R)) {ﬂn(R), n>1

To produce E(n) from MUP, the crudest intuition, obtained by staring at the respective homotopy

groups, is to mod out certain elements v,1,v,42,--. Luckily, taking the Thom spectrum of a

nonzero « € 71 (MUP) = 713(BGL,(MUP)) is equivalent to the spectra-level of modding out a:
Ma =~ cofib(X2MUP % MUP) =: MUP/«.

This interesting result is Theorem 4.1 from [ ]. Given two maps a1, a3 : S3 — BGIL,4 (MUP),
the infinite loop space structure on BGL; (MUP) produces a product map

(a1,a2) : S° x $* — BGL{(MUP) x BGL;(MUP) — BGL;(MUP)
whose Thom MUP-module is May Apyup May ~ MUP/(aq, ). If we stipulate that a sequence
(a1, a2, - - - ) is regular in 7r,(MUP), then
ﬂ*(MUP/(tXl,(Xz, s )) = ﬂ*(MUP)/(Dq,le, ) )
A key observation is that if each «; is a loop map, then by [ ] the associated Thom MU P-
module can be refined to an A-MUP-algebra.
Proposition 1 ([ 1,2.2). Eacha; : S* — BGL{(MUP) can be given the structure of a loop map.

Proof. We need to construct a map &; : BS® — B2GL;(MUP) such that Q&; ~ a;. This is equivalent
to proving the map

S* < BS® % B2GL,(MUP)
is adjoint to the map a;. This follows from the fact that any map S* — B>GL;(MUP) factors
through BS?, since BS® ~ HP* has an even cell decomposition
S4n71 . Ynfl
S*=Y, > Y, —» ---— BS®, where l l

D¥ —— Y,



is a pushout diagram. The obstruction to factoring through Y, lies in 7y, 1(B>GL;(MUP))
Ttan—3(MUP), which is zero since MUP is even periodic.

0 IR

Now it only remains to choose an appropriate regular sequence (a1, ay, - - - ) such that the K(n)-
localization of MUP/ (a1, a,- - - ) is precisely the Lubin-Tate theory associated to a formal group
law of height n over F,. This is a simple computation on the level of homotopy groups and is
explained in detail in Lemma 2.3 of [ ]. In short, feeding our handcrafted B>?GL; (MUP)-space

(&1,&,--):BS® x BS® x --- — B>*GL{(MUP)

to the machine produces for us the desired Lubin-Tate theory. This construction has the benefit of
being able to be upgraded to the equivariant setting, to which we now turn attention.

3 Equipping the C,-action

In this section we summarize the procedure in Section 3 and 4 of [ ] where the previous
construction will be equipped with an appropriate C;-action.

Let MonCaty,, be the category of monoidal categories and lax monoidal functors. Remark 4.1.1.7
of [ ] describes a Cy-action, called rev, on MonCaty,,: if (C, ®) is a monoidal category, then
(Crev, @rev) has the same underlying category as C but the opposite ®-structure. A homotopy fixed
point for rev is a monoidal category (C, ®) equipped with a coherent equivalence C =~ Cy,,. Such
a (C,®) is called a category with involution, which is different from a homotopy fixed point for the
trivial Cp-action on MonCaty,,. There is an induced Cp-action on Aq-algebra objects A« (C) in C,
with the property that A« (C) is equivalent to A (Cres), the opposite algebra. We referred to this
Cp-action on A (C) the op action, and write AZ (C) to emphasize the action.

Now we specialize to our case of interest. Take C to be the category Spaces of (pointed) spaces. An
A-space X with involution is a homotopy fixed point for the op action on AZ, (Spaces). Then the
monoidal overcategory Spaces , y is also equipped with involution.

Denote the sign representation of C, by ¢ and the 2-dimensional regular representation by p. In the
Cr-equivariant setting, we are more interested in (27, based maps from the representation spheres
SY, instead of the ordinary loop space (). There are now two different equivalences

op triv triv
(@ (@t (gt

grouplike A, —spaces 2 connected spaces SECEN grouplike A, —spaces .

Therefore, if X is a grouplike A-space with involution, then there exists a connected space B” X
with trivial Co-action such that 3“B?X ~ X. Thus, ()¢ is a Cy-equivariant functor

Q7 : Spaces 5,y — AZ(Spaces ),

sharing the same underlying functor as (). Then, Hahn and Shi make the observation that the Cs-
action on Q7 (X) for any Cy-space X is given by precomposing with the the complex conjugation
action on S! and postcomposing with the C,-action on X.

In our present case, we want a good Cr-action on MUP. This requires a more geometric interpre-
tation of the periodic complex bordism spectrum MUP. Recall that MUP can be constructed as a



homology theory using the Landweber exactness theorem by formally inverting u, an element in
degree 2:
MUP, (X) := MU, [u™Y] @py, MU (X).

Alternatively, invoking techniques from Chapter V of [ ], the homotopy ring map that
forces 7.(MUP) to be 7t,(MU)[u*!] equivalently produces MUP as a spectrum. In [ ] the
authors describes MUP as arising as the Thom spectrum of the complex [-homomorphism. The
complex conjugation by infinite loop maps on BU x Z thus gives the desired C;-action on MUP
by Ee-ring maps. This in turn induces C,-actions by monoidal functors on the category of MU P-
modules and Spaces g1 (mup)-

Combining the discussion above, we have successfully set up the equivariant machinery, that is,
a Cy-equivariant diagram (in the homotopy fixed point category of MonCat;,, with respect to the
rev action)

0 Th
Spaces g1, (mup) — Ao(SPaces pocr (mup)) % A% (MUP-modules),

where Bf is our notation for BB?. Note that we sometimes write MURP for spectrum MUP
equipped with the Cp-action. Now what remains is to construct a specific B°GL;(MUP)-space
with underlying map of spaces

BS® x BS® x --- — B>GL{(MUP)

just like before, such that feeding it into the machine above produces the Cy-equivariant version
of E(n), the 2-periodic Johnson-Wilson theory.

Upon reviewing our construction in the non-equivariant case, we first need to understand the
quaternionic projective space HP* as a model of B?SP*!, Cy-equivariantly. This is Proposition 4.2
of [ ]. Firstly, there is a C;-even cell decomposition on HP* due to Mike Hopkins, where HP®
arises as a filtered colimit

San—l E— Yn—l
Szp:Y1—>Y2_>_>HPOO/ Where l i

*%Yn

is a homotopy pushout square of C;-spaces. The C-action on HP® is given by conjugation by i:

Lodzgitt oo,

[zo:z1 1] — [izoi™
The expression i(a + bi + cj + dk)i~! = a + bi — cj — dk tells us that the Cy-cells attached are
multiples of 2p. Under this action, CP* sits as a fixed point inside HP*. The C-equivariant map
§% — HP® given by the cell decomposition lifts the non-equivariant map S* - BS?, and gives
amap f : SPT1 — QYHP* of Cy-spaces which is an equivalence of underlying non-equivariant
spaces. Hahn and Shi show that f is in fact a Cy-equivalence by checking that it is an equivalence
on Cy-fixed points. To do that we first write f as the composite of the unit map SP*! — Q/¥75p+1
and ()7 applied to S — HP®. We then form the following commutative diagram of Cp-fixed



point:
(SP+1)C2 — 52

|
(szaserl)Cz
/ \)
(Zasp+l)Cz (QaHpoo)Cz .
X)

—

(HP®)© = CP®

ls

HP*®

We shall compute (£75P+1)% and (Q“HP*)% and find them both equivalent to S?, so that maps
4 and 5 are inclusions into CP*. We further deduce that 2 o 1 is an equivalence, so that by com-
mutativity 3 o 1 is also an equivalence, which is what we want. Indeed, since CP* — HP® is the
map BS' — BS3, its fiber (Q"HP*®)% is $3/S! ~ S2. On the other hand, for any C,-space X, the
composite X — Q727X — XX, where the second map is obtained by sending f : 5 — XX to
£(S%), induces an equivalence X©? ~ (£7X)© on Cp-fixed points, which implies that 2 0 1 is an
equivalence.

As a corollary of the above discussion, the exact same argument as in Proposition 1 shows that the
obstruction of any map S* — B°GL;(MURP) factoring through B?S**! lies in

ﬁznp_l(BpGLl (MURP)) = 7"((2,1_1) (MURP),

o—1

which is zero by the computation in [ ]. Now, by choosing an analogous regular sequence
(ay,ap,---) : BYSPT x B7SPTL ... — BPGL;(MURP)

as in the non-equivariant setting and applying the ()” and the Thom spectra functor, we obtain a
homotopy fixed point of AZ (MUP-modules), which we denote by Eg(n). The underlying A.-
ring spectrum of Eg(n) is of course the 2-periodic version of Johnson-Wilson theory E(n), but
Eg(n) comes with an involution E(n) ~ E(n)° by Ac-ring maps that lifts the C; action on E(n)
by complex conjugation.

We are almost ready to prove the main theorem. Denote by E(n) the K(n)-localization of Eg(n).
We now have a Galois Cy-action by involution on the Morava E-theory associated to a height-n
formal group law defined over F,. However, it is not a priori clear that this action is given by the
real orientation, that is, is compatible with the C;-equivariant map from MUg. We now prove that
it is indeed the case, using the Goerss-Hopkins-Miller theorem.

—

Proposition 2 ([ 1, 1.6). The spectrum E(n) with its central Galois Cy-action, is real oriented, i.e.,
receives a Co-equivariant map from MUR.

—_—

Proof. Let C; be the category of all spectra equivalent to E(n) and equivalences between them. Let

—

C; (resp. C3) be the category of Aq-ring spectra (resp. Eq-ring spectra) with E(n) as underlying



spectrum, and equivalences between them. The equivariant sequence of forgetful functors C3 —
C, — (1 comes from the sequence

E(Spectra) — AZ (Spectra) — Spectra,

where [E (Spectra) and Spectra are equipped with trivial Cp-action. A map of categories with C,-
action is an equivalence if and only if the underlying non-equivariant functor is an equivalence
of non-equivariant categories. By the Goerss-Miller-Hopkins theorem, the map C; — C; is an
equivalence; they are equivalent to BG,;, where G, is the Morava stabilizer group. Thus, any
homotopy fixed-point of C; is uniquely lifted to one of C3, and in particular, the Cy-action on E/(n\)
via A-involutions has a unique lift to a Cy-action by [E-automorphisms, which is the data of a
map BC, — BG,, or equivalently, C; — G,,. question O

proof of Theorem 1. We need to show that there is a real orientation on the Lubin-Tate theory E ;)
associated to any finite height formal group law I' over any perfect field k of characteristic 2, not
just F». In general, there is a map Er) — Egr), where T is the pushforward of I'/k to the

algebraic closure I'/k. Since any two height-n formal groups over an algebraically closed field are
isomorphic, I' is isomorphic to the Honda formal group defined over F,, which by Proposition 2
is real oriented. A computation shows that nfﬁE (k1) is a copy of the non-equivariant homotopy
group 7o E (kF)7 SO that E (k) isafree E (k,r)-module. Thus, since nfﬁflE (kT) = 0,sois nfﬁE (k1) 1-€.,
the C-equivariant spectrum E 1 is even. Lemma 3.3 from [ ] says that every such spectrum
is real orientable. Finally, if G is a finite subgroup of G, containing C, as a central subgroup,
then we can leverage the Hill-Hopkins-Ravenel norm functor Ngz (—) and get a sequence of G-
equivariant homotopy ring maps

N&(MUR) — N&(E(k,l")) — E(k,l")'

4 Applications to computation
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