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Abstract
This is an ongoing project on the real orientations in the context of equivariant and chro-

matic homotopy theory. By a real orientation, we mean a map from MUR, the complex cobor-
dism spectrum MU equipped with a C2-action by E∞-maps. It turns out

1 Motivation and overview

Equivariant foundations, why we care about real-orientations, what good does it do blah blah.

In the remainder of the section we give an outline of the seminal work by Hahn and Shi [HS20].
Their main result is the following theorem.

Theorem 1 ([HS20], 1.3). Let k be a perfect field of characteristic 2 and Γ a height-n formal group law over
k. Denote by E := E(k,Γ) the corresponding Lubin-Tate theory. Let G be a finite subgroup of the Morava
stabilizer group that contains the central subgroup C2. Then there is a G-equivariant map NG

C2
MUR → E.

The underlying spectrum of MUR is MU, with a C2-action induced by complex conjugation on
complex manifolds. The MUR is sometimes referred to as the real cobordism spectrum. Recall that a
map of commutative ring spectra MU → R determines a complex orientation on R. We call a C2-
equivariant map MUR → R a real orientation on R. The theorem above implies that in particular,
when G = C2, there is a real orientation MUR → En on Morava E-theory of height n ≥ 1.

The proof can be roughly divided into four steps:

(i) a construction of the non-equivariant, 2-periodic version of Johnson-Wilson theory E(n) as
an A∞-MUP-algebra, starting from a map X → B2GL1(MUP):

Spaces/B2GL1(MUP)
Ω−−→ A∞(Spaces/BGL1(MUP))

Thom−−−→ A∞(MUP-modules);

after K(n)-localizing we obtain Ê(n), which is a model for the Lubin-Tate theory associated
to a height-n formal group law defined over F2;

(ii) equip the above construction with appropriate C2-action; in particular, if we start with a
specific C2-equivariant map X → BρGL1(MUP), we obtain a spectrum ER(n) with a C2-
action via A∞-maps, which has E(n) as its underlying spectrum; after K(n)-localizing we

get a C2-equivariant version of Ê(n);

(iii) show that there is a real orientation MUR → Ê(n) using the Goerss-Hopkins-Miller theorem;

(iv) extend the real orientation above to that on the Lubin-Tate theory associated to a finite height
formal group law defined over any perfect field of characteristic 2, and apply the HHR norm
functor NG

C2
(−), citing results from [HM17] and [Mei18].
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2 Units and Thom spectra

In this section we give an overview of the construction of units of a ring spectrum and the Thom
spectrum functor, which is the starting point of the construction of the 2-periodic Johnson-Wilson
theory E(n).

We first explain the construction of units in a E∞-ring spectrum A due to [MQRT77]. By units, we
mean a spectrum gl1A such that Ω∞gl1A ≃ GL1A, where GL1A is the space of units defined by the
following pullback diagram

GL1A Ω∞ A

(π0A)× π0A

of (unpointed) spaces. Since A is an E∞-ring spectrum, GL1A is a grouplike E∞-space, and since
grouplike E∞-spaces model connective spectra, we have the adjunction

Σ∞
+Ω∞ : ho((−1)-connected spectra) ⇆ ho(S [E∞]) : gl1

of categories enriched over the homotopy category. Here S [E∞] is the category of E∞-ring spectra
modeled by the model category of C-algebras, for some suitable E∞-operad C. To elaborate on the
adjunction, we note that there is an adjoint pair (Σ f , Ω∞) between the category of (−1)-connected
spectra and T [C]× that descends to an equivalence on the homotopy categories; there is also an
obvious adjoint pair (Σ∞

+ , Ω∞) between T [C] and S [C]. Now on the space level the functor GL1
is right adjoint to the inclusion T [C]× → T [C], so we in fact have a sequence of adjunctions

Σ∞
+Ω∞ : (−1)-connected spectra T [C]× T [C] I [C] : gl1

Ω∞

Σ f incl

GL1

Σ∞
+

Ω∞

Note that the above adjunction is a vast generalization of the adjunction

Z[−] : abelian groups ⇆ commutative rings : GL1.

For the Thom spectrum functor, there are three different definitions, and they are proven to be
equivalent in [ABG+08] using Morita theory, which provides a characterization of continuous,
homotopy-colimit preserving functors from Σ∞

+GL1R-modules to R-modules as a certain kind of
extension of scalars functor. We first introduce the operadic (or, as described by [ABG+08] it, “neo-
classical”) definition due to Lewis and May. For technical details, we refer to the original treatment
in the Chapter IX of [LMSM86]; see also [MS06], and [MQRT77]. Let Ic be the category of finite
dimensional real inner product spaces and linear isometric isomorphisms, which is symmetric
monoidal under direct sum. Define an Ic-space to be a continuous functor from Ic to spaces. The
category of of Ic-spaces inherits the symmetric monoidal structure, and commutative monoids
for this category model E∞-spaces. Commutative monoids T that satisfy an additional condition
is called an Ic-FCP (functor with Cartesian product), which gives rise to an E∞-space structured
by the linear isometries operad. Examples to keep in mind include O, U, and Spin.

Consider the Ic-FCP F given by taking V ⊂ R∞ to the space F(V) of based homotopy self-
equivalences of SV , the one-point compactification of V. Passing over to the colimit under in-
clusion, we get F(R∞) = colimV F(V) which is a model for GL1S, where S is the sphere spectrum.
Furthermore, since F is a monoid, applying the levelwise two-sided bar construction yields a Ic-
FCP

V 7→ BF(V) = B(∗, F(V), ∗)
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that provides a model for BGL1S, the classifying space of stable spherical fibrations. Now readers
can probably guess the construction for the Ic-FCP model for EGL1S, and the levelwise maps

EF(V) = B(∗, F(V), SV) → B(∗, F(V), ∗) = BF(V)

are a universal quasifibrations with fiber SV . Given a map f : X → BF(R∞), by pulling back along
subspaces BF(V) → BF(R∞) we get a filtration {XV}V on X. Let E(XV) → X(V) be the pullback
of the universal quasifibration along XV → BF(V).

Definition ([LMSM86]). The V-th space of the Thom prespectrum is defined to be the Thom space
of E(XV) → X(V), that is, E(XV)+ ∧F(V)+ SV , obtained by collapsing the section induced from the
basepoint inclusion ∗ → SV . The spectrification is called the Thom spectrum of f .

In fact, any filtration of closed subspaces of X ordered by inclusion gives the same Thom spectrum
(though not the same Thom prespectra), so we simply denote the Thom spectrum by MF, ignoring
the data of a specific f : X → BF(R∞). It is proved in [LMSM86] that MF is given by

MF = colimVΣ−VΣ∞ MF(V),

and since levelwise MF(V) is modeled by the homotopy quotient SV/F(V), MF is stably equiva-
lent to S/F(R∞) = S/GL1S.

The classical construction above focuses on the sphere spectrum and spherical fibrations. Works of
Ando, Blumberg, Gepner, Hopkins, and Rezk [ABG+08], and May-Sigurdsson [MS06] generalized
to construct a Thom spectrum associated to a map of spectra ζ : b → Σgl1R, for R an E∞-ring
spectrum. For obvious reasons, we shall write bgl1R for Σgl1R and Bgl1R for Ω∞bgl1R. There is a
map of cofiber sequences

g = Σ−1b gl1R gl1R

∗ p egl1R ≃ ∗

b bgl1R

j=Σ−1ζ

ζ

,

where the left and bottom right squares are homotopy pullback squares.

Definition. The R-algebra Thom spectrum of ζ is the E∞-R-algebra Mζ that is the pushout in the
following diagram of E∞-ring spectra:

Σ∞
+Ω∞g Σ∞

+Ω∞gl1R R

S = Σ∞
+Ω∞∗ Σ∞

+Ω∞ p Mζ

ϵ

.

That is, Mζ is given by the derived smash product S ∧L
Σ∞
+Ω∞g R, or Σ∞

+Ω∞ p ∧L
Σ∞
+Ω∞gl1R R.

After looping down and viewing ζ as an infinite loop map f : B → BGL1R, we see that the Thom
spectrum of f is the derived smash product Σ∞

+P ∧L
Σ∞
+GL1R R. When one takes R = S so that the

map B → BGL1S classifies a stable spherical fibration, we recover the classical construction in
[MQRT77] and [LMSM86].
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This works all quite well when R is an E∞-ring spectrum. But in the case when R is A∞, we en-
counter difficulties due to the fact that GL1R is not a topological group but rather only a grouplike
A∞-space. This means that it is more delicate to forming “principal GL1R-bundles”. The solu-
tion, as provided by [ABG+08], is to adapt the operadic smash product so that on a subcategory
of T [C] the monoids are precisely A∞-spaces. This is based on the theory of rigidified model of
A∞-spaces as developed in the thesis of Andrew Blumberg.

Another solution that is cleaner but more abstract is the ∞-categorical approach developed in
[ABG+08] and [ABG+14].

For a sufficiently nice map f : B → BG (here G is a nice Fc-FCP, such as O or U), Lewis proved in
the Chapter IX of [LMSM86] that the associated Thom spectrum M f has an enriched ring struc-
ture. In particular, operadic analysis shows that if f is an n-fold loop map, then M f is an En-ring
spectrum. Using general categorical arguments, the authors of [ACB19] were able to prove the
same results for the generalized R-algebra Thom spectra in the ∞-categorical sense. In particular,
in our case at hand, by applying the Thom construction to a loop map f : X → B2GL1(MUP), we
obtain an A∞-MUP-algebra M f . In the remainder of the section, we shall explain the construction
of this particular f , so that M f is a model for the 2-periodic Johnson-Wilson theory E(n).

First note that for an E∞-ring spectrum R,

πn(GL1(R)) =

{
π0(R)×, n = 0
πn(R), n ≥ 1

.

To produce E(n) from MUP, the crudest intuition, obtained by staring at the respective homotopy
groups, is to mod out certain elements vn+1, vn+2, · · · . Luckily, taking the Thom spectrum of a
nonzero α ∈ π2(MUP) ∼= π3(BGL1(MUP)) is equivalent to the spectra-level of modding out α:

Mα ≃ cofib(Σ2MUP α−→ MUP) =: MUP/α.

This interesting result is Theorem 4.1 from [ACB19]. Given two maps α1, α2 : S3 → BGL1(MUP),
the infinite loop space structure on BGL1(MUP) produces a product map

(α1, α2) : S3 × S3 → BGL1(MUP)× BGL1(MUP) → BGL1(MUP)

whose Thom MUP-module is Mα1 ∧MUP Mα2 ≃ MUP/(α1, α2). If we stipulate that a sequence
(α1, α2, · · · ) is regular in π∗(MUP), then

π∗(MUP/(α1, α2, · · · )) ∼= π∗(MUP)/(α1, α2, · · · ).

A key observation is that if each αi is a loop map, then by [ACB19] the associated Thom MUP-
module can be refined to an A∞-MUP-algebra.

Proposition 1 ([HS20], 2.2). Each αi : S3 → BGL1(MUP) can be given the structure of a loop map.

Proof. We need to construct a map α̃i : BS3 → B2GL1(MUP) such that Ωα̃i ≃ αi. This is equivalent
to proving the map

S4 ↪→ BS3 α̃i−→ B2GL1(MUP)

is adjoint to the map αi. This follows from the fact that any map S4 → B2GL1(MUP) factors
through BS3, since BS3 ≃ HP∞ has an even cell decomposition

S4 = Y1 → Y2 → · · · → BS3, where
S4n−1 Yn−1

D4n Yn
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is a pushout diagram. The obstruction to factoring through Yn lies in π4n−1(B2GL1(MUP)) ∼=
π4n−3(MUP), which is zero since MUP is even periodic.

Now it only remains to choose an appropriate regular sequence (α1, α2, · · · ) such that the K(n)-
localization of MUP/(α1, α2, · · · ) is precisely the Lubin-Tate theory associated to a formal group
law of height n over F2. This is a simple computation on the level of homotopy groups and is
explained in detail in Lemma 2.3 of [HS20]. In short, feeding our handcrafted B2GL1(MUP)-space

(α̃1, α̃2, · · · ) : BS3 × BS3 × · · · → B2GL1(MUP)

to the machine produces for us the desired Lubin-Tate theory. This construction has the benefit of
being able to be upgraded to the equivariant setting, to which we now turn attention.

3 Equipping the C2-action

In this section we summarize the procedure in Section 3 and 4 of [HS20] where the previous
construction will be equipped with an appropriate C2-action.

Let MonCatLax be the category of monoidal categories and lax monoidal functors. Remark 4.1.1.7
of [Lur18] describes a C2-action, called rev, on MonCatLax: if (C,⊗) is a monoidal category, then
(Crev,⊗rev) has the same underlying category as C but the opposite ⊗-structure. A homotopy fixed
point for rev is a monoidal category (C,⊗) equipped with a coherent equivalence C ≃ Crev. Such
a (C,⊗) is called a category with involution, which is different from a homotopy fixed point for the
trivial C2-action on MonCatLax. There is an induced C2-action on A∞-algebra objects A∞(C) in C,
with the property that A∞(C) is equivalent to A∞(Crev), the opposite algebra. We referred to this
C2-action on A∞(C) the op action, and write Aσ

∞(C) to emphasize the action.

Now we specialize to our case of interest. Take C to be the category Spaces of (pointed) spaces. An
A∞-space X with involution is a homotopy fixed point for the op action on Aσ

∞(Spaces). Then the
monoidal overcategory Spaces/X is also equipped with involution.

Denote the sign representation of C2 by σ and the 2-dimensional regular representation by ρ. In the
C2-equivariant setting, we are more interested in Ωσ, based maps from the representation spheres
Sσ, instead of the ordinary loop space Ω. There are now two different equivalences

grouplike A∞−spaces connected spaces grouplike A∞−spaces

op triv

Ωσ Ω

triv

.

Therefore, if X is a grouplike A∞-space with involution, then there exists a connected space BσX
with trivial C2-action such that ΩσBσX ≃ X. Thus, Ωσ is a C2-equivariant functor

Ωσ : Spaces/BσX → Aσ
∞(Spaces/X),

sharing the same underlying functor as Ω. Then, Hahn and Shi make the observation that the C2-
action on Ωσ(X) for any C2-space X is given by precomposing with the the complex conjugation
action on S1 and postcomposing with the C2-action on X.

In our present case, we want a good C2-action on MUP. This requires a more geometric interpre-
tation of the periodic complex bordism spectrum MUP. Recall that MUP can be constructed as a
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homology theory using the Landweber exactness theorem by formally inverting u, an element in
degree 2:

MUP∗(X) := MU∗[u±1]⊗MU∗ MU∗(X).

Alternatively, invoking techniques from Chapter V of [EKMM97], the homotopy ring map that
forces π∗(MUP) to be π∗(MU)[u±1] equivalently produces MUP as a spectrum. In [HS20] the
authors describes MUP as arising as the Thom spectrum of the complex J-homomorphism. The
complex conjugation by infinite loop maps on BU × Z thus gives the desired C2-action on MUP
by E∞-ring maps. This in turn induces C2-actions by monoidal functors on the category of MUP-
modules and Spaces/BGL1(MUP).

Combining the discussion above, we have successfully set up the equivariant machinery, that is,
a C2-equivariant diagram (in the homotopy fixed point category of MonCatLax with respect to the
rev action)

Spaces/BρGL1(MUP)
Ω−−→ Aσ

∞(Spaces/BσGL1(MUP))
Thom−−−→ Aσ

∞(MUP-modules),

where Bρ is our notation for BBσ. Note that we sometimes write MURP for spectrum MUP
equipped with the C2-action. Now what remains is to construct a specific BρGL1(MUP)-space
with underlying map of spaces

BS3 × BS3 × · · · → B2GL1(MUP)

just like before, such that feeding it into the machine above produces the C2-equivariant version
of E(n), the 2-periodic Johnson-Wilson theory.

Upon reviewing our construction in the non-equivariant case, we first need to understand the
quaternionic projective space HP∞ as a model of BσSρ+1, C2-equivariantly. This is Proposition 4.2
of [HS20]. Firstly, there is a C2-even cell decomposition on HP∞ due to Mike Hopkins, where HP∞

arises as a filtered colimit

S2ρ = Y1 → Y2 → · · · → HP∞, where
S2nρ−1 Yn−1

∗ Yn

is a homotopy pushout square of C2-spaces. The C2-action on HP∞ is given by conjugation by i:

[z0 : z1 : · · · ] 7→ [iz0i−1 : iz1i−1 : · · · ].

The expression i(a + bi + cj + dk)i−1 = a + bi − cj − dk tells us that the C2-cells attached are
multiples of 2ρ. Under this action, CP∞ sits as a fixed point inside HP∞. The C2-equivariant map
S2ρ → HP∞ given by the cell decomposition lifts the non-equivariant map S4 → BS3, and gives
a map f : Sρ+1 → ΩσHP∞ of C2-spaces which is an equivalence of underlying non-equivariant
spaces. Hahn and Shi show that f is in fact a C2-equivalence by checking that it is an equivalence
on C2-fixed points. To do that we first write f as the composite of the unit map Sρ+1 → ΩσΣσSρ+1

and Ωσ applied to S2ρ → HP∞. We then form the following commutative diagram of C2-fixed
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point:

(Sρ+1)C2 = S2

(ΩσΣσSρ+1)C2

(ΣσSρ+1)C2 (ΩσHP∞)C2

(HP∞)C2 = CP∞

HP∞

6

54

1

2 3

.

We shall compute (ΣσSρ+1)C2 and (ΩσHP∞)C2 and find them both equivalent to S2, so that maps
4 and 5 are inclusions into CP∞. We further deduce that 2 ◦ 1 is an equivalence, so that by com-
mutativity 3 ◦ 1 is also an equivalence, which is what we want. Indeed, since CP∞ → HP∞ is the
map BS1 → BS3, its fiber (ΩσHP∞)C2 is S3/S1 ≃ S2. On the other hand, for any C2-space X, the
composite X → ΩσΣσX → ΣσX, where the second map is obtained by sending f : Sσ → ΣσX to
f (S0), induces an equivalence XC2 ≃ (ΣσX)C2 on C2-fixed points, which implies that 2 ◦ 1 is an
equivalence.

As a corollary of the above discussion, the exact same argument as in Proposition 1 shows that the
obstruction of any map S2ρ → BρGL1(MURP) factoring through BσSρ+1 lies in

π2nρ−1(BρGL1(MURP)) ∼= π(2n−1)ρ−1(MURP),

which is zero by the computation in [HK01]. Now, by choosing an analogous regular sequence

(α1, α2, · · · ) : BσSρ+1 × BσSρ+1 × · · · → BρGL1(MURP)

as in the non-equivariant setting and applying the Ωσ and the Thom spectra functor, we obtain a
homotopy fixed point of Aσ

∞(MUP-modules), which we denote by ER(n). The underlying A∞-
ring spectrum of ER(n) is of course the 2-periodic version of Johnson-Wilson theory E(n), but
ER(n) comes with an involution E(n) ≃ E(n)op by A∞-ring maps that lifts the C2 action on E(n)
by complex conjugation.

We are almost ready to prove the main theorem. Denote by Ê(n) the K(n)-localization of ER(n).
We now have a Galois C2-action by involution on the Morava E-theory associated to a height-n
formal group law defined over F2. However, it is not a priori clear that this action is given by the
real orientation, that is, is compatible with the C2-equivariant map from MUR. We now prove that
it is indeed the case, using the Goerss-Hopkins-Miller theorem.

Proposition 2 ([HS20], 1.6). The spectrum Ê(n) with its central Galois C2-action, is real oriented, i.e.,
receives a C2-equivariant map from MUR.

Proof. Let C1 be the category of all spectra equivalent to Ê(n) and equivalences between them. Let

C2 (resp. C3) be the category of A∞-ring spectra (resp. E∞-ring spectra) with Ê(n) as underlying
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spectrum, and equivalences between them. The equivariant sequence of forgetful functors C3 →
C2 → C1 comes from the sequence

E∞(Spectra) → Aσ
∞(Spectra) → Spectra,

where E∞(Spectra) and Spectra are equipped with trivial C2-action. A map of categories with C2-
action is an equivalence if and only if the underlying non-equivariant functor is an equivalence
of non-equivariant categories. By the Goerss-Miller-Hopkins theorem, the map C2 → C1 is an
equivalence; they are equivalent to BGn, where Gn is the Morava stabilizer group. Thus, any

homotopy fixed-point of C2 is uniquely lifted to one of C3, and in particular, the C2-action on Ê(n)
via A∞-involutions has a unique lift to a C2-action by E∞-automorphisms, which is the data of a
map BC2 → BGn, or equivalently, C2 → Gn. question

proof of Theorem 1. We need to show that there is a real orientation on the Lubin–Tate theory E(k,Γ)
associated to any finite height formal group law Γ over any perfect field k of characteristic 2, not
just F2. In general, there is a map E(k,Γ) → E(k,Γ), where Γ is the pushforward of Γ/k to the

algebraic closure Γ/k. Since any two height-n formal groups over an algebraically closed field are
isomorphic, Γ is isomorphic to the Honda formal group defined over F2, which by Proposition 2
is real oriented. A computation shows that πC2∗ρ E(k,Γ) is a copy of the non-equivariant homotopy

group π2∗E(k,Γ), so that E(k,Γ) is a free E(k,Γ)-module. Thus, since πC2
∗ρ−1E(k,Γ) = 0, so is πC2∗ρ E(k,Γ), i.e.,

the C2-equivariant spectrum E(k,Γ) is even. Lemma 3.3 from [HM17] says that every such spectrum
is real orientable. Finally, if G is a finite subgroup of Gn containing C2 as a central subgroup,
then we can leverage the Hill-Hopkins-Ravenel norm functor NG

C2
(−) and get a sequence of G-

equivariant homotopy ring maps

NG
C2
(MUR) → NG

C2
(E(k,Γ)) → E(k,Γ).

4 Applications to computation
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