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Abstract
This is a set of notes the author took when reading [Stap].

1 Overview

As a consequence of the seminal theorem by Goerss, Hopkins, and Miller, each Morava E-theory
spectrum E(n) admits a unique E∞-ring structure. This multiplicative structure can be exploited
to define a power operation Pm : E0(X) → E0(X× BΣm) that refines the m-th power map x 7→ x×m :
E0(X) → E0(Xm) in the following sense:

E0(Xm ×Σm EΣm)
0(X× BΣm)

E0(X) E0(Xm) E0(X)

Pm

x 7→x×m diag

diag

∗→BΣmfib

Here Σm is the symmetric group on m letters. Power operations are multiplicative but not addi-
tive, and it purely comes from the multiplicative structure of E(n). We are particularly interested
in the case when X = BG for finite groups G. This is because the Atiyah-Segal completion the-
orem provides a description of the K0(BG) in terms of the representation ring of G, and Morava
E-theory is a generalization of p-adicK-theory to higher height. Therefore, E0(BG) is a natural gen-
eralization of the representation ring of G. For instance, as we shall see, the Strickland’s theorem
provides an algebro-geometric description of a quotient of E0(BΣpr).

On the other hand, relying purely on the additive structure of E(n), Hopkins, Kuhn, and Ravenel
defined maps χ : E0(BG) → Cl(G,C0) which are analogous to the map in representation theory
associating to each representation its character. Here Cl(G,C0) is analogous to the ring of class
functions onG taking values in a ringC0. The ring Cl(G,C0) comes equipped with a natural action
of GLn(Zp), and that Hopkins, Kuhn, and Ravenel proved that χ induces a rational isomorphism

Q ⊗ E0(BG) ∼= Cl(G,C0)GLn(Zp),

which provides a good algebraic description of E0(BG) modulo torsion.

It’s natural to ask if we can extend Pm, via χ, to a power operation on Cl(G,C0), that is, can we fill
the following commutative diagram:

E0(BG) E0(BG× BΣm)

Cl(G,C0) Cl(G× Σm,C0)

χ

?

Pm

χ ?

1



It is surprising that Pm and χ should interact since one comes from the multiplicative structure
of E(n) and the other from the additive structure. There are three ingredients that goes into the
solution of the aforementioned problem:

(i) the ring C0, which is intimately related to certain moduli problems over the Lubin-Tate
space, and the symmetries of those moduli problems;

(ii) the result of Ando, Hopkins, and Strickland, which gives an algebro-geometric description
of a special case of Pm in terms of those moduli problems;

(iii) the HKR character theory, which implies that the E-cohomology of finite groups can be de-
tected by the E-cohomology of its abelian subgroups.

2 Moduli problems over the Lubin-Tate space and their symmetries

Let us fix the data of a formal group F of height n over a perfect field κ of characteristic p.

Recall that a deformation of F/κ to a complete local ring (R,m) is a triple of data

(G, i, τ) := (G/R, i : κ ↪→ R/m, τ : π∗G
∼=−→ i∗F),

where π : R → R/m and τ is an isomorphism of formal groups over R/m. In other words, G is
a formal group over R such that the pullback of G over its special fiber R/m is isomorphic to the
pullback of F over the same fiber. Diagrammatically:

G π∗G i∗F F

SpecR SpecR/m Spec κ

∼=

π i

.

A ⋆-isomorphism between two deformations (G, i, τ) and (G ′, i ′, τ ′) of F/κ to (R,m) is i = i ′ and
δ : G → G ′ is an isomorphism of formal groups compatible with τ and τ ′ in the sense that the
following diagram commutes:

π∗G i∗F

π∗G ′ i∗F

τ

τ ′

idπ∗δ .

There is a moduli problem LT : CompLocRings → Groupoids from the category of complete local
rings to the category of groupoids by sending (R,m) to the groupoid of deformations of F/κ to
(R,m) with ⋆-isomorphisms. To see that LT defines a functor, note that for a map j : (R,m) → (S, n)
of complete local rings, there is an induced map of groupoids LT(R,m) → LT(S, n) defined by
sending

(G, i, τ) 7→ (j∗G, κ i−→ R/m
j/m−−→ S/n, (j/m)∗τ)
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that fits into the following commutative diagram:

G SpecR SpecS j∗G

π∗G SpecR/m SpecS/n (π ′)∗j∗G = (j/m)∗G

F Specκ

i∗F (j/m)∗i∗F

(j/m)∗ττ ∼=

j/m

π

j

π ′

i

∼=

.

It is a classical theorem of Lubin and Tate that the moduli problem LT has a solution: the functor
LT is corepresented by a complete local ring (called the Lubin-Tate ring) OLT noncanonically iso-
morphic toW(κ)[[u1, · · · ,un−1]], wherW(κ) is the ring of p-typical Witt vectors over κ. Therefore,
there is a universal deformation (Gu/OLT, idκ, idF) such that for any deformation (G, i, τ) over
(R,m) there is a map j : OLT → R such that (j∗Gu, j/m, id(j/m)∗F) that is ⋆-isomorphic to (G, i, τ):

Gu SpecOLT SpecR j∗Gu

π∗Gu Specκ SpecR/m (j/m)∗Gu

F (j/m)∗F

j

π

idF
∼=

j/m

id(j/m)∗F∼=

.

Building on LT, there are a few other moduli problems. Let A be a finite abelian group and G a
formal group over a complete local ring (R,m). A map f : A → G over R is just a map of abelian
groups A→ G(R). Such a map f is called a level structure if

f(A) := Spf
(

R[[x]]∏
a∈A x− f(a)

)
is a subgroup scheme of G and that rankA ≤ ht G. We define functors

Hom(A, Gu), Level(A, Gu), Subpk(Gu) : CompLocRings → Groupoids,

defined by

(i) Hom(A, Gu)(R,m) is the groupoid with objects triples (f : A→ G, i, τ) with ⋆-isomorphisms
δ : G → G ′ that commute with the structure in the sense that

A G

G ′

δ

f

f ′
;

(ii) Level(A, Gu)(R,m) is the groupoid with objects triples (ℓ : A→ G, i, τ) with ⋆-isomorphisms
that commute with the level structures ℓ : A→ G;
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(iii) Subpk(Gu)(R,m) is the groupoid with objects triples (H ⊂ G, i, τ), where H ⊂ G is a sub-
group scheme of order pk, with ⋆-isomorphisms that send H to itself.

All those moduli problems have nice solutions: they are corepresented by complete local rings
OHom(A,Gu), OLevel(A,Gu), and OSub

pk
(Gu) that are finitely generated and free as modules over OLT.

This relies crucially on the Weierstrass preparation theorem, which can be applied precisely be-
cause the Lubin-Tate ring OLT is a complete local ring. We shall also denote OLT by E0 associated
to the Morava E-theory.

Those moduli problems are highly symmetric in the sense that they are acted on by endomorphism
groups. Indeed, there is a well-defined left action of Aut(A) on both Hom(A, Gu) and Level(A, Gu)
given by precomposition with the inverse. The action is via OLT-algebra maps, since it does not
effect G, i, or τ. There is also a right action of the Morava stabilizer group Aut(F/κ) on the moduli
problems given by (G, i, τ) · s = (G, i, (i∗s)τ).

Let L = Z×n
p and T = L∨ ∼= (Qp/Zp)n, the Pontryagin dual of L. The letter L is for (p-adic) lattice

and T is for (p-adic) torus. The pk-torsion points of T is given by T[pk] ∼= (L/pkL)∨, and both
T[pk] and its dual are isomorphic to (Z/pkZ)n. Specializing to the case A = T[pk], we see that
there are left and right actions:

Aut(T[pk]) ∼= GLn(Z/pkZ) ↷ Level(T[pk], Gu) ↶ Aut(F, κ).

There are functors Level(T[pk], Gu) → Level(T[pk−1], Gu) sending a level structure T[pk] → G

to the composite T[pk−1] ⊂ T[pk] → G. Let Level(T, Gu) = limk Level(T[pk], Gu), where the
groupoid Level(T, Gu)(R,m) consists of triples (ℓ : T → G, i, τ) up to compatible ⋆-isomorphisms
such that the induced map T[pk] → G is a level structure for any k ≥ 0.

Definition. The ring of functions OLevel(T,Gu) = colimkOLevel(T[pk],Gu) is called the Drinfeld ring.
The ring C0 := Q ⊗OLevel(T,Gu).

The key observation is that when taken limits, the moduli problem Level(T, Gu) now picks up
extra symmetries in the sense that the left action of Aut(T) extends to an action of Isog(T), the
monoid of endoisogenies (endomorphisms with finite kernel), which is much larger.

Let σk be the k-th Frobenius endomorphism on κ and σkF the k-th Frobenius endomorpshim on F.
Recall the k-th relative Frobenius Frobk : F → σ∗F, which is obtained by the universal property of
pullback in the following diagram:

F

(σk)∗F F

Spec κ Spec κσk

σkF

Frobk

.

Let H ⊂ G be a subgroup scheme of order pk. Define the quotient G/H to be the coequalizer

G/H := coeq

(
G ×H

action−−−−−−−−−−−−→→
proj.

G

)
.
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There is a canonical way to extend G/H to a deformation of F/κ. Let q : G → G/H be the quotient
map and consider the following diagram of formal groups over R/m:

π∗G i∗F

π∗(G/H) i∗(σk)∗F
τ/H

π∗q

τ

i∗Frobk .

Since ker(π∗q) ⊂ π∗G and ker(i∗Frobk ◦ τ) ⊂ π∗G have the same order, and that a formal group
over a field of characteristic p has a unique subgroup scheme of order pk for each k ≥ 0, we
must have ker(π∗q) = ker(i∗Frobk ◦ τ). Thus, by the first isomorphism theorem there is a unique
isomorphism τ/H that makes the above diagram commute. Therefore, (G/H, i ◦ σk, τ/H) forms a
deformation of F/κ.

Finally, we are able to define the extended action of Isog(T) on Level(T, Gu). Let ϕH ∈ Isog(T) be
an endoisogeny with kernel H ⊂ T, a finite subgroup of order pk. For a deformation with level
structure (ℓ : T → G, i, τ), set

ϕH · (ℓ, i, τ) = (T
ψ−1

H−−→ T/H ℓ/H−−→ G/H, i ◦ σk, τ/H),

where ψH is the unique isomorphism that makes the diagram

T

T/H T

qH
ϕH

ψH

∼=

commute. Note that we did not distinguish H ⊂ T from ℓ(H) ⊂ G, which is a subgroup scheme
of order pk. Also note that in the case that H is trivial, this recovers the action of Aut(T) given by
precomposition with the inverse.

Hopkins, Kuhn, and Ravenel observed that there is a connection between the Morava E-cohomology
of a finite abelian groupA and the moduli problems described above, namely, that there is a canon-
ical isomorphisms E0(BA) ∼= OHom(A∨,Gu) of E0-algebras that is compatible with the action of the
stabilizer group Aut(F/κ).

3 Hopkins-Kuhn-Ravenel character theory

Recall that C0 is defined to be the rationalization of the Drinfeld ring OLevel(T,Gu). We record a few
properties of C0 without proof:

(i) C0 ⊗E0 Gu[p
k] ∼= T[pk];

(ii) C0 is an Aut(T)-Galois extension of Q ⊗ E0, where the Aut(T)-action by Q ⊗ E0-algebra
maps is inherited from that of OLevel(T,Gu).

Let G be a group. Let us construct the ring Cl(G,C0). Consider the action of G on the set
Hom(L,G) of homomorphisms from L ∼= Z×n

p to G by conjugation. Let Cl(G,C0) be the ring
of conjugation invariant functions on Hom(L,G) taking values in C0, that is,

Cl(G,C0) =
∏

Hom(L,G)/∼

C0,
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where Hom(L,G)/∼ is the set of G-conjugacy classes of maps from L to G. Taking a conjugacy
class [α] : L → G, there exists a k ≥ 0 such that α factors through L/pkL → G. Applying E-
cohomology we get a map E0(α) : E0(BG) → E0(L/pkL). Since L/pkL is a finite abelian group
and (L/pkL)∨ = T[pk], we have a composite of E0-algebra maps

χ[α] : E
0(BG)

E0(α)−−−→ E0(L/pkL) ∼= OHom(T[pk],Gu) → OLevel(T[pk]Gu) → OLevel(T,Gu) → C0

coming from the forgetful functor on the moduli problems. Assembling these maps together for
different choices of [α] ∈ Hom(L,G)/∼, we arrive at the definition of the HKR character map
χ : E0(BG) → Cl(G,C0). Note that when G is finite abelian, χ[α] is a map on the moduli problem
level Level(T, Gu) → Hom(G∨, Gu) sending a deformation (ℓ : T → G, i, τ) to (ℓ ◦ E0(α), i, τ).

It is easily checked that χ is Aut(F/κ)-equivariant for the canonical action of the stabilizer group
on E0(BG) and the diagonal action on Cl(G,C0). Moreover, there is a left action of Aut(T) on
Hom(L,G)/∼ given by precomposition with the Pontryagin dual. Combining this with the right
action of Aut(T) on C0 inherited from that of OLevel(T,Gu), we obtain an action of Aut(T) on
Cl(G,C0) as follows: given ϕ ∈ Aut(T), f ∈ Cl(G,C0), and [α] ∈ Hom(L,G)/∼,

(ϕ · f)([α]) = (f([αϕ∨]) ·ϕ.

The base change C0 ⊗ χ : C0 ⊗E0 E
0(BG) → Cl(G,C0) of χ to C0 is Aut(T)-equivariant, where the

action of Aut(T) on the domain is given by the Aut(T)-action on the left tensor factor.

Theorem (HKR). The character map χ induces an isomorphism C0 ⊗ χ : C0 ⊗E0 E
0(BG) ∼= Cl(G,C0).

Note that by the second property of C0, we get an isomorphism Q ⊗ E0(BG) ∼= Cl(G,C0)Aut(T) on
the Aut(T)-invariants.

4 Power operations and their moduli problem description

Let E be a E∞-ring spectrum (for example, and X be a space. Let f ∈ Σ∞
+ X → E be an element

of E0(X). The symmetric group Σm on m letters acts diagonally on the m-th smash power of f.
Taking the homotopy Σm-coinvariants (or alternatively, forming the Borel construction) we obtain

Σ∞
+ (X×m

hΣm
) (Σ∞

+ X)
∧m
hΣm

E∧mhΣm E

Σ∞
+ (EΣm ×Σm X

×m) (EΣm)+ ∧Σm (Σ∞
+ X)

∧m

f∧m

,

where the last map is given by the multiplicative structure on E. This map is an element in
E0(EΣm ×Σm X

×m), so we have produced a map

Pm : E0(X) → E0(EΣm ×Σm X
×m)

which we call the m-th total power operation. Since Σm acts trivially on the image of the diagonal
map X → X×m, we have an inclusion X × BΣm → X×m ×Σm EΣm. Restricting Pm along this
inclusion gives them-th power operation

Pm : E0(X)
Pm−−→ E0(EΣm ×Σm X

×m) → E0(X× BΣm).
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We are particularly interested in the case when E is Morava E-theory (which has a nice E∞-ring
strucutre due to Goerss-Hopkins-Miller) and X = BG for finite group G. Strickland proved that
E0(BΣm) is a free E0-module, so that by the Künneth isomorphism we have

Pm : E0(BG) → E0(BG)⊗E0 E
0(BΣm).

Let ι : ∗ → BΣM be the basepoint inclusion. Then

E0(BG)
Pm−−→ E0(BG)⊗E0 E

0(BΣm)
id⊗E0(ι)−−−−−→ E0(BG)

recovers the m-th power map x 7→ x×m on E0(BG). Both Pm and Pm are multiplicative but not
additive. The failure of additivity is controlled by the theory of transfer maps.

Let Y → X be an n-fold cover and E a cohomology theory. A transfer map is a map E∗(Y) → E∗(X)
such that precomposing with the restriction E∗(X) → E∗(Y) is the multiplication-by-n-map on
E∗(X). Explicitly, let P → X be the associated principal Σm-bundle of Y → X. We obtain a map

t : X ∼= P/Σm ∼= P×Σm EΣm → Ym ×Σm EΣm

where latter map is induced by P ⊂ Ym. Precomposing E∗(t) with them-th total power operation
on E∗(Y) yields the transfer map

Tr : E∗(Y) Pm−−→ E∗(Ym ×Σm EΣm)
E∗(t)−−−→ E∗(X)

of E∗(X)-modules. Power operations can be recovered from transfer maps and vice versa. Now
supposeH is a subgroup of the finite groupG. Then EG→ EG/H ∼= EG×G (G/H) is the universal
principalH-bundle, so that we have BH ∼= EG/H. The induced map BH→ BG ∼= EG/G is aG/H-
bundle. Specializing to our case at hand, the inclusion Gm ⋊ (Σi × Σm−i) ⊂ Gm ⋊ Σm induces a
finite covering map

E(Σi × Σm−i)×(Σi×Σm−i) (BG)
×m → EΣm ×Σm (BG)×m

which induces a transfer map

TrE : E0
(
E(Σi × Σm−i)×(Σi×Σm−i) (BG)

×m)→ E0
(
EΣm ×Σm (BG)×m

)
of E0(EΣm ×Σm (BG)×m)-modules. Summing over i gives a E0(EΣm ×Σm (BG)×m)-algebra map
⊕i TrE, and we denote the image ideal of ⊕i TrE in E0(EΣm ×Σm (BG)×m) by ITr. When G is trivial
we denote ITr by ITr ⊂ E0(BΣm). These ideals measure the obstruction to additivity of Pm and Pm
in the sense that they are the smallest ideal such that the quotients

Pm/ITr : E
0(BG) → E0(EΣm ×Σm (BG)×m)/ITr

and
Pm/ITr : E

0(BG) → E0(BG)⊗E0 E
0(BΣm)/ITr

are ring homomorphisms.
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The transfer map TrE : E0(BH) → E0(BG) can be lifted, via the HKR character map, to a transfer
map TrC0

on the generalized class functions in the sense that the following diagram commutes:

E0(BH) E0(BG)

Cl(H,C0) Cl(G,C0)

χ χ

TrE

TrC0

.

The map TrC0
defined by Hopkins, Kuhn, and Ravenel is as follows. Given f ∈ Cl(H,C0) and

[α] ∈ Hom(L,G)/∼, there is an action of the image Im(α) on the cosets G/H inherited from the
G-action on G/H. Then Im(g−1αg) ⊂ H if and only if gH ∈ (G/H)Im(α), the invariants of the
Im(α)-action. Define TrC0

: Cl(H,C0) → Cl(G,C0) by

TrC0
(f)([α]) =

∑
gH∈(G/H)Im(α)

f([g−1αg]).

Analogously, there is a transfer ideal JTr ⊂ Cl(Σm,C0) given by the image of the sum of TrC0
:

Cl(Σi × Σm−i,C0) → Cl(Σm,C0) over i, which has a nice description given by

Cl(Σm,C0)/JTr ∼=
∏

Subm(T)

C0.

Results of Ando, Hopkins, and Strickland allows us to build connections between power opera-
tions and the moduli problems discussed before. Since E is a p-local theory, ITr = E

0(BΣm) unless
m is a p-th power. The following theorem gives an algebro-geometric interpretation of ITr.

Theorem (Strickland). There is a canonical isomorphism E0(BΣpk)/ITr ∼= OSub
pk

(Gu) of E0-algebras.

A remark is that Strickland’s original proof is quite technical. Schlank and Stapleton [SS15] devel-
oped an alternative approach using the so-called transchromatic character map.

Recall that E0(BA) also has a moduli interpretation given by E0(BA) ∼= OHom(A∨,Gu), where A is
finite abelian. Now both the domain and codomain of the additive power operation

Ppk/ITr : E
0(BA) → E0(BA)⊗E0 E

0(BΣpk)/ITr

yields a moduli problem description, which is the content of the following theorem.

Theorem (Ando-Hopkins-Strickland). The additive power operation Ppk/ITr is the ring of functions on
the map of moduli problems

Subpk(Gu)⊗LT Hom(A∨, Gu) → Hom(A∨, Gu)

that, when applied to a complete local ring R, sends

(H ⊂ G,A∨ → G, i, τ) 7→ (A∨ → G → G/H, i ◦ σk, τ/H),

where H is a subgroup scheme of order pk, by recalling that G/H is a deformation in a canonical way.
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5 Power operations on the ring of generalized class functions

Finally, we are ready to construct power operations on the ring of generalized class functions that
is compatible with power operations on Morava E-theory via the HKR character maps.

Let Sub(T) be the set of finite groups of T and π : Isog(T) → Sub(T) be the projection sending
an endoisogeny of T to its kernel. Choose a section ϕ : Sub(T) → Isog(T). For H ∈ Sub(T) we
denote the corresponding endoisogeny ϕ(H) by ϕH. We shall produce a map

Pϕm : Cl(G,C0) → Cl(G× Σm,C0).

A class [L → G×Σm] ∈ Hom(L,G×Σm)/∼ is represented by a class [α] ∈ Hom(L,G)/∼ together
with a direct sum ⊕iHi of subgroups Hi ⊂ T with

∑
i |Hi| = m. This is because of a bijection

Hom(L,Σm)/∼
∼= {⊕iHi | Hi ⊂ T and

∑
i

|Hi| = m}.

Given f ∈ Cl(G,C0), define Pϕm by

Pϕm(f)([α],⊕iHi) =
∏
i

f([α ◦ϕ∨
Hi
]) ·ϕHi

,

where the last bit is the right action of Isog(T) on C0 = Q ⊗OLevel(T,Gu).

The solution depends on the choice of ϕ. This is because C0 is an Aut(T)-extension of Q ⊗ E0.
Therefore, the choice disappears after taking Aut(T)-invariants. But first, we need to describe the
action of Aut(T) on Cl(G× Σm,C0). The action of γ ∈ Aut(T) on the [α] ∈ Hom(L,G)/∼ bit is
given by the usual precomposition, and on ⊕iHi is given by γ · ⊕iHi = ⊕iγHi. It can be checked
that Pϕm is Aut(T)-equivariant, and the resulting map

Cl(G,C0)Aut(T) → Cl(G× Σm,C0)Aut(T)

is independent of the choice of ϕ.

The diagonal action by the Morava stabilizer group Aut(F/κ) on the generalized class functions
commutes with Pϕm in the sense that the following diagram commutes

Cl(G,C0) Cl(G× Σm,C0)

Cl(G,C0) Cl(G× Σm,C0)

s s

P
ϕ
m

P
ϕ
m

for any s ∈ Aut(F/κ).

Final remark: one might think about extending the solution for total power operations Pm. This
is done in [BS17], but one needs a generalization of Strickland’s theorem (which is in [SS15]) and
Ando-Hopkins-Strickland (in [BS17]) for the additive total power operations Pm/ITr.
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