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Abstract

These notes were written as the final project for a differential topology course taught by Prof.
Eduard Looijenga in the winter of 2023. Familiarity with basic notions of complex analysis and
differentiable manifolds is assumed. References include Griffiths-Harris [1], Huybrechts [2], and
Voisin [3].

1 Complex manifolds and Kähler manifolds

1.1 Complex manifolds

Recall that a smooth structure on a differentiable manifold is defined as an equivalence class of
smooth atlases.

Definition. Let X be a differentiable manifold of dimension 2n. A holomorphic atlas for X is an
open cover {Ui}i of X with diffeomorphisms κi : Ui → κi(Ui) ⊂ Cn such that the transition maps

κj ◦ κ−1
i : κi(Ui ∩ Uj) → κj(Ui ∩ Uj)

are holomorphic. A complex structure on X is an equivalence class of holomorphic atlases.

Holomorphic functions on a complex manifold and holomorphic maps between complex manifolds
are defined analogously to their smooth counterparts. However, complex manifolds are fundamen-
tally different from differentiable ones. For instance, an easy application of the maximum modulus
principle from complex analysis shows that there are no non-constant holomorphic functions on a
compact connected complex manifold.

There is also the notion of a holomorphic vector bundle of rank r over a complex manifold X,
consisting of a holomorphic map π : E → X together with local trivializations ρi : ρ−1

i (Ui) ∼= Ui×Cr

such that the transition matrices ρj ◦ ρ−1
i have holomorphic coefficients.

Example (Level sets). This is similar to the real case. Let f : Cn → C be a holomorphic function
and let 0 ∈ C be a regular value for f . Then a complex version of the implicit function theorem
shows that Z(f) = f−1(0) is a complex manifold of dimension n−1. In fact, this can be generalized
to complete intersections: if 0 is a regular value for holomorphic functions (f1, · · · , fm) : Cn → Cm,
then Z(f1) ∩ · · · ∩ Z(fm) is a complex manifold of dimension n−m.

Example (Complex tori). Let V be an n-dimensional complex vector space and Γ ⊂ V a free
abelian, discrete subgroup of order 2n (so that Γ is freely generated by an R-basis of V ), then
X = V/Γ is a complex manifold. In the case of V = Cn and Γ = Z2n we get complex tori. In the
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one-dimensional case, C/Γ is an elliptic curve. In fact, consider the action of SL2(Z)/{±1} on the
upper half-plane H = {z ∈ C : Im z > 0} via(

a b
c d

)
z 7→ az + b

cz + d
.

Any subgroup Γ ⊂ SL2(Z)/{±1} that acts freely on H gives rise to a connected 1-dimensional
complex manifold H/Γ, which is called a Riemann surface.

The construction in the previous example can be generalized as follows. Let G be a complex Lie
group that acts properly and freely on a topological space X. Then the quotient space X/G has a
natural complex manifold structure, with holomorphic quotient map X → X/G.

Example (Hopf manifolds). Consider the free action of the free abelian group Z on Cn \ {0} by
(z1, · · · , zn) 7→ (λkz1, · · · , λkzn) for some k ∈ Z. The quotient manifold (Cn \ {0})/Z, which is
diffeomorphic to S1 × S2n−1, is called a Hopf manifold.

We now explain another characterization of complex manifolds. To do that, we need some linear
algebra. In the following, let V be a finite-dimensional real vector space.

Definition. An almost complex structure on V is a linear endomorphism I : V → V with I2 = −Id.

If V is a complex vector space, then v 7→ iv defines an almost complex structure on the underlying
real vector space of V . Conversely, if V admits an almost complex structure I, then V is a complex
vector space via (a + bi) · v = av + bI(v). Therefore, for vector spaces, complex structures and
almost complex structures are equivalent notions.

Let VC := V ⊗R C be the complexification of a real vector space V . An almost complex structure
on V extends C-linearly to an endomorphism of VC, which is again denoted by I. Clearly, the only
eigenvalues of I on VC are ±i. Denote by V 1,0 and V 0,1 the eigenspaces of ±i:

V 1,0 = {v ∈ VC : I(v) = iv}, V 0,1 = {v ∈ VC : I(v) = −iv}.

Then there is a decomposition VC = V 1,0 ⊕ V 0,1. Indeed, since V 1,0 ∩ V 0,1 = ∅, the natural map
V 1,0 ⊕ V 0,1 → VC is injective, whose inverse is given by v 7→ (v − iI(v))/2 ⊕ (v + iI(v))/2. The
dual space V ∨ of V has a induced almost complex structure given by I(f)(v) = f(I(v)), so that we
have a similar eigenspace decomposition (V ∨)1,0 and (V ∨)0,1. If we consider the exterior algebra
∧∗VC = ⊕k≥0 ∧k VC, then by looking at the basis we have a decomposition

∧kVC = ⊕p+q=k ∧p,q V, where ∧p,q V := ∧pV 1,0 ⊗C ∧qV 0,1.

Now we apply this machinery to manifolds.

Definition. An almost complex structure on a differentiable manifold X is a vector bundle endo-
morphism I : TX → TX satisfying I2 = Id, where TX is the (real) tangent bundle of X.

Clearly, the dimension of an almost complex manifold must be even.

Unlike vector spaces however, the situation here is a bit more complicated. Every complex manifold
admits a natural almost complex structure. Indeed, let {∂/∂x1, · · · , ∂/∂xn, ∂/∂y1, · · · , ∂/∂yn} be
a basis for TpX. Then ∂/∂xi 7→ ∂/∂yi and ∂/∂yi 7→ −∂/∂xi defines an almost complex structure
for TpX. But the converse is false. That is why it is called an “almost” complex structure. To
remedy the situation, we need the notion of integrability.
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Let X be an almost complex manifold. Let TCX be the complexification of TX, and ΩCX the
dual of TCX. Then we have decompositions TCX = T 1,0X ⊕ T 0,1X and Ω1,0X ⊕ Ω0,1X. To ease
the notation, let us denote ∧kΩCX and ∧p,qΩ(X) by Ωk

C(X) and Ωp,q(X), respectively.

Definition. Let Π p,q : Ωk
C(X) → Ωp,q(X) be the projection operator. Let d : Ωk

C(X) → Ωk+1
C (X)

be the C-linear extension of the usual exterior differential. Then we define

∂ := Π p+1,q ◦ d : Ωp,q(X) → Ωp+1,q(X) and ∂̄ := Π p,q+1 ◦ d : Ωp,q(X) → Ωp,q+1(X).

Note that ∂ and ∂̄ satisfy the Leibniz rule inherited from that of d.

Proposition-Definition 1. An almost complex structure I on a manifold X is integrable if the
following equivalent conditions hold:

(i) d = ∂ + ∂̄; (ii) on Ωp,q
X one has Π 0,2 ◦ d = 0;

(iii) [T 0,1X,T 0,1X] ⊂ T 0,1X; (iv) ∂2 = ∂̄2 = 0 and ∂∂̄ = −∂̄∂.

Theorem 2 (Newlander-Nierenberg). Any integrable almost complex structure is induced by a
unique complex structure. Therefore, complex manifolds are precisely differentiable manifolds with
an integrable almost complex structure.

For a proof of these integrability criterion, see [2] and [3].

Definition. Let X be a complex manifold. We define the (p, q)-Dolbeault cohomology to be

Hp,q(X) := Hq(Ωp,•(X), ∂̄) = ker(∂̄)/ Im(∂̄).

1.2 Kähler manifolds

Kähler manifolds form an important class of complex manifolds. To be able to define what Kähler
manifolds are, we once again go back to linear algebra.
Let V be a finite-dimensional real vector space equipped with an inner product 〈·, ·〉, which is a
positive-definite symmetric bilinear form. Let I be an almost complex structure on V .

Definition. The inner product 〈·, ·〉 is compatible with an almost complex structure I on V if
〈I(v), I(w)〉 = 〈v, w〉 for any v, w ∈ V . The fundamental form is defined to be

ω := −〈·, I(·)〉 = 〈I(·), ·〉.

It is easily verified that ω is real and of type (1, 1), i.e., ω ∈ ∧2V ∨ ∩ ∧1,1V ∨. Note that two of
the three structure {〈·, ·〉, I, ω} determine the remaining one. These structures define a Hermitian
form (·, ·) := 〈·, ·〉 − iω on (V, I). Let 〈·, ·〉C be the natural Hermitian extension of 〈·, ·〉 to the
complexification VC, that is, 〈λv, µw〉C = λµ̄〈v, w〉. Then there is an isomorphism (V, I) ∼= (V 1,0, i)
with (·, ·)/2 = 〈·, ·〉C|V 1,0 given by v 7→ (v − iI(v))/2.
Let V be an n-dimensional complex vector space. Let {xi, yi = I(xi)} be an R-basis for V and
{xi, yi} a dual basis for V ∨. Let {zi = (xi − I(xi))/2} and {z̄i = (xi + iI(xi))/2} be bases for V 1,0

and V 0,1, respectively, and let {zi = xi + iyi} and {z̄i = xi − iyi} be their dual bases.

Proposition 3. Suppose the Hermitian form 〈·, ·〉C on V 1,0 with respect to this basis is given by a
Hermitian matrix (hij)/2. Then the fundamental form is of the form

ω =
i

2

n∑
i,j=1

hijz
i ∧ z̄j .
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Proof. By definition we have 〈
n∑

i=1

aizi,

n∑
j=1

bjzj

〉
C

=
1

2

n∑
i,j=1

hijaib̄j .

Now the correspondence (·, ·) = 2〈·, ·〉C|V 1,0 gives (xi, xj) = hij . Since (·, ·) is Hermitian on (V, I),
we have (xi, yj) = −ihij and (yi, yj) = hij . Since (·, ·) = 〈·, ·〉 − iω by definition, we have ω =
i Im(·, ·) and 〈·, ·〉 = Re(·, ·). Therefore we have ω(xi, xj) = ω(yi, yj) = − Im(hij) = −〈xi, yj〉 and
ω(xi, yj) = Re(hij) = 〈xi, xj〉 = 〈yi, yj〉. Since zi ∧ z̄j = xi ∧ xj − i(xi ∧ yj + xj ∧ yi) + yi ∧ yj ,

ω = −
∑
i<j

Im(hij)(x
i ∧ xj + yi ∧ yj) +

n∑
i,j=1

Re(hij)x
i ∧ yj =

i

2

n∑
i,j=1

hijz
i ∧ z̄j .

Definition. Let X be a complex manifold with Riemannian metric g. We say X admits a Hermitian
structure if g is compatible with the induced almost complex structure I. A Kähler structure is an
Hermitian structure for which the fundamental form ω = g(I(·), ·) is closed, i.e., dω = 0.

Let us see some examples of Kähler manifolds. For a non-example, see page 10.

Example (Fubini-Study metric). We describe a canonical Kähler structure on the projective space
Pn called the Fubini-Study metric. Let {Ui, κi} be the standard chart of Pn, where Ui is the
complement of {z = [z1 : · · · : zn] ∈ Pn : zi = 0}. We define

ωi :=
i

2π
∂∂̄ log

(
n∑

k=0

∣∣∣∣zkzi
∣∣∣∣2
)

∈ Ω1,1(Ui).

To see that ωi’s glue to a globally defined form ω ∈ Ω1,1(X), we note that for any z ∈ Pn we have

∂∂̄ log |z|2 = ∂

(
1

zz̄
∂̄(zz̄)

)
= ∂

(
zdz̄

zz̄

)
= ∂

(
dz̄

z̄

)
= 0.

Now ωi|Ui∩Uj = ωj |Ui∩Uj follows from

log

(
n∑

k=0

∣∣∣∣zkzj
∣∣∣∣2
)

= log

(∣∣∣∣ zizj
∣∣∣∣2 n∑

k=0

∣∣∣∣zkzi
∣∣∣∣2
)

= log

(∣∣∣∣ zizj
∣∣∣∣2
)

+ log

(
n∑

k=0

∣∣∣∣zkzi
∣∣∣∣2
)

= log

(
n∑

k=0

∣∣∣∣zkzi
∣∣∣∣2
)
.

The global form ω is real, since ∂∂̄ = ∂̄∂ = −∂∂̄ yields ωi = −ω̄i. It is also closed, since ∂ωi = 0.
Following Proposition 3, since

∂∂̄ log

(
1 +

n∑
k=1

|wk|2
)

= ∂

( ∑
k wkdw̄k

1 +
∑

k |wk|2

)
=

∑
k dwk ∧ dw̄k

1 +
∑

k |wk|2
−

(
∑

k ωkdw̄k)(
∑

l w̄ldwl)

(1 +
∑

k |wk|2)2

for wk = zk/zi = κi(zk), we may write

ωi =
i

2π(1 +
∑

k |wk|2)2
∑
k,l

hkldwk ∧ dw̄l, where hkl =

(
1 +

∑
k

|wk|2
)
δkl − w̄iwj .

where wk = zk/zi = κi(zk). The Hermitian matrix hkl is positive-definite. Indeed, for any u 6= 0,

uT (hkl)ū = (u, u) + (w,w)(u, u)− uT w̄wū = (u, u) + (w,w)(u, u)− |(w, u)|2 > 0,

where (·, ·) is the standard Hermitian inner product on Cn. Since I and ω determine the inner
product g, we have produced a Riemannian metric g on Pn that is Kähler.
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Note that if (X, g) is Kähler, then the restriction g|Y gives any complex submanifold Y ⊂ X
a Kähler structure. Therefore, any projective manifold is also Kähler. In particular, Riemann
surfaces, which are projective due to a remarkable result of Riemann, are Kähler.

Before moving on, we state some crucial identities called Kähler identities. These identities express
the commutator relations of various operators on a Kähler manifold. As we shall see later, in the
context of Hodge theory, they reflect what is particularly nice about Kähler manifolds.

Definition. Let V be an n-dimensional oriented real vector space with (I, 〈·, ·〉, ω). Let vol be the
volume form. We define the following linear operators:

(i) Lefschetz operator L : ∧kV ∨ → ∧k+2V ∨ given by α 7→ ω ∧ α;

(ii) Hodge ∗-operator ∗ : ∧kV → ∧n−kV given by α ∧ ∗β = 〈α, β〉 · vol;

(iii) dual Lefschetz operator Λ : ∧kV ∨ → ∧k−2V ∨ given by Λ = ∗−1 ◦ L ◦ ∗.

An element α ∈ ∧kV ∨ is primitive if Λα = 0. Write P k for the subspace of primitive elements.

It is mostly straightforward (except for (iv), which requires some Lie theory) to verify the following:

(i) ∗ is self adjoint, i.e., 〈α, ∗β〉 = (−1)k(n−k)〈∗α, β〉;

(ii) L and Λ are adjoint, i.e., 〈Λα, β〉 = 〈α,Lβ〉;

(iii) Lk induces an isomorphism ∧kV ∨ → ∧2n−kV ∨;

(iv) there is the so-called Lefschetz decomposition ∧kV ∗ = ⊕i≥0L
i(P k−2i).

Furthermore, these operators can be extended C-linearly when (V, 〈·, ·〉) becomes (VC, 〈·, ·〉C), where
L and Λ are of type (1, 1) and (−1,−1), respectively, and ∗ : ∧p,qV → ∧n−p,n−q is given by
α ∧ ∗β̄ = 〈α, β〉C · vol. The Lefschetz decomposition respects the bidegree decomposition so that
we have P k

C = ⊕p+q=kP
p,q where P p,q = P k

C ∩ ∧p,qV ∨.

Now we pass from linear operators to differential operators on manifolds.

Definition. Let (X, g) be an oriented n-dimensional Riemannian manifold. We define

(i) adjoint operator d∗ : Ωk(X) → Ωk−1(X) given by d∗ = (−1)n(k+1)+1 ∗ ◦d ◦ ∗;

(ii) Laplacian ∆ : Ωk(X) → Ωk(X) given by ∆ = d∗d+ dd∗.

A form α is harmonic if ∆α = 0. The space of all harmonic k-forms is denoted Hk(X).

If (X, g) admits a Hermitian structure, then n is even, so that d∗ becomes − ∗ ◦d ◦ ∗. We define
∂∗ := −∗◦∂̄ ◦ ∗ and ∂̄∗ := −∗◦∂ ◦ ∗ analogously, which are of type (−1, 0) and (0,−1) respectively.
Finally, we define Laplacians ∆∂ := ∂∗∂ + ∂∂∗ and ∆∂̄ := ∂̄∗∂̄ + ∂̄∂̄∗.

Now suppose X is compact. We define an inner product 〈·, ·〉 on Ω•(X) by 〈α, β〉 :=
∫
X α ∧ ∗β,

with respect to which d and d∗ are formally adjoint. Indeed, using Stokes’ theorem we have

〈dα, β〉 =
∫
X
dα ∧ ∗β = (−1)k−1

∫
X
α ∧ d(∗β) = (−1)(p−1)+n(n−p)

∫
X
α ∧ ∗(∗d ∗ β) = 〈α, d∗β〉.

Similarly one can show that ∆ is self-adjoint.
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Example. Let us do some local computation to make everything concrete. Let α =
∑n

i=1 fidxi be
a locally defined smooth 1-form. Then

d∗α = (−1)n(1+1)+1 ∗ d ∗ α = (−1) ∗ d
n∑

i=1

(−1)i−1fidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

= (−1) ∗
n∑

i=1

∂fi/∂xidx1 ∧ · · · ∧ dxn = −
n∑

i=1

∂fi/∂xi.

As an exercise, show that ∆(f) = −
∑n

i=1 ∂
2f/∂x2i for a locally defined smooth 0-form, so that ∆

corresponds to the usual notion of second-order differential operator.

The above discussion carries over to compact Hermitian manifolds, where we define on Ω•
C(X) an

inner product (·, ·) :=
∫
X α ∧ ∗β̄, with respect to which ∂ and ∂∗ are adjoint, and so do ∂̄ and ∂̄∗.

Note also that as a consequence of Proposition-Definition 1.1, d∗ = ∂∗ + ∂̄∗ and (∂∗)2 = (∂̄∗)2 = 0.

Proposition 4 (Kähler identities). Let (X, g) be a Kähler manifold. Then the following hold:

(i) [∂̄, L] = [∂, L] = 0 and [∂̄,Λ] = [∂∗,Λ] = 0;

(ii) [∂̄∗, L] = i∂, [∂∗, L] = −i∂̄ and [Λ, ∂̄] = −i∂∗, [Λ, ∂] = i∂̄∗;

(iii) ∆∂ = ∆∂̄ = ∆/2, and ∆ commutes with ∗, ∂, ∂̄, ∂∗, ∂̄∗, L, and Λ.

The proof of these identities involve rather messy manipulations of symbols. See [2] for detail.

2 Hodge theory

2.1 Hodge theory for compact oriented Riemannian manifolds

A key motivation for Hodge theory is to find harmonic representatives of de Rham cohomology
classes. In the sense that will be explained below, harmonic representatives are the ones with
minimal norm with respect to the inner product 〈·, ·〉 on Ω•(M). In the following, we provide a
rough sketch of the idea, without worrying about concerns from analysis.

Let (M, g) be a compact oriented Riemannian manifold. For α ∈ Ωk(M), the de Rham cohomology
class [α] ∈ Hk

dR(M) consists of forms α+ dβ for β ∈ Ωk−1(M). Assuming everything is nice, we’d
have an element α0 ∈ [α] of minimal norm with respect to 〈·, ·〉, which is perpendicular to the dβ,
i.e., 〈α0, dβ〉 = 〈d∗α0, β〉 = 0 for all β ∈ Ωk−1(M). In other words, α0 is a solution to the differential
equations dα = 0 and d∗α = 0. Moreover, since d and d∗ are adjoint, we have Im d∗ ⊥ ker f and
Im d ⊥ ker d∗. These facts suggest an orthogonal decomposition of the form

Ωk(M) = (ker d ∩ ker d∗)⊕ d(Ωk−1(M))⊕ d∗(Ωk+1(M)),

where the first two terms represent closed forms. Therefore, every de Rham cohomology class is
represented by a unique element in ker d∩ker d∗. We claim that ker d∩ker d∗ = ker∆ is the subspace
Hk(M) of harmonic forms. Indeed, since d : Ωk(M) → d(Ωk(M)) is surjective, the adjoint operator
d∗ : d(Ωk(M)) → Ωk(M) is injective. Similarly, since d∗ is surjective on Ωk(M), d is injective on
d∗(Ωk(M)). Thus, the composition

d(Ωk(M)) Ωk(M) d(Ωk(M))d∗ d
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is injective. On the other hand, dd∗ sends both ker d ∩ ker d∗ and d∗(Ωk(M)) to 0. An analogous
discussion shows that d∗d is injective on d∗(Ωk(M)) and sends everything else to 0. Therefore, the
kernel of ∆ = dd∗ + d∗d is precisely ker d∩ ker d∗. By the previous discussion, every de Rham class
thus has a harmonic representative whose norm is minimized.

Theorem 5 (Hodge decomposition for compact oriented Riemannian manifolds). Let (M, g) be a
compact oriented Riemannian manifold. Then for every k we have:

(i) Hk(M) is finite-dimensional;

(ii) there is an orthogonal decomposition Ωk(M) = Hk(M)⊕∆(Ωk(M)) with respect to 〈·, ·〉.

Corollary 6. There is an isomorphism Hk(M)
≃−→ Hk

dR(M). Equivalently, every de Rham class
has a unique harmonic representative.

It may seem that we have already proved Theorem 5 by our previous discussion, but we have
in fact ignored some analytical problems. For starters, direct sum decomposition for an infinite-
dimensional space is not entirely trivial. Moreover, the problem at the core is that the existence
of an element of minimal norm is only true in generality for closed convex subspaces of a Hilbert
space. So we have to complete Ωk(M) to a Hilbert space with respect to the L2-norm. Now the
previous argument applies and yields a decomposition for L2-forms. The essential question is then:
how do we go back to smooth forms? This turns out to be a serious analytical challenge.

Luckily, a result from functional analysis states that a weak solution to a Laplace equation is in
fact a true solution. To make it precise, fix any α ∈ Ωk(M) and consider the equation ∆η = α. A
solution η0 to this Laplace equation defines a linear functional ℓ : Ωk(M) → R given by ℓ(β) = 〈α, β〉
that satisfies ℓ(∆β) = 〈η0,∆β〉 = 〈∆η0, β〉 = 〈α, β〉 for any β ∈ Ωk(M) by the self-adjointness of
∆. We call such an ℓ a weak solution of ∆η = α.

Lemma 7 (regularity lemma). If ℓ is a weak solution of ∆η = α for some α ∈ Ωk(M), then there
exists η0 ∈ Ωk(M) such that ℓ(β) = 〈η0, β〉 for any β ∈ Ωk(M). In particular, ∆η0 = α.

Lemma 8. Let {αn} be a sequence of smooth p-forms on M such that ‖αn‖ ≤ C and ‖∆αn‖ ≤ C
for all n and some constant C > 0. Then {αn} has a subsequence that is Cauchy in Ωk(M).

Assuming these technical lemmas, we are able to sketch the proof of Theorem 5.

Proof sketch of Theorem 5. If Hk(M) were not finite-dimensional, then it would contain an infinite
orthonormal sequence, which is impossible by Lemma 8. This proves (i). Now let {ei}ni=1 be an
orthonormal basis for Hk(M). For any α ∈ Ωk(M) we can write α = γ +

∑n
i=1〈α, ei〉ei for some

γ ∈ (Hk(M))⊥. It suffices to show that (Hk(M))⊥ = ∆(Ωk(M)). Since 〈∆α, β〉 = 〈α,∆β〉 for any
α ∈ Ωk(M) and β ∈ Hk(M), we have (Hk(M))⊥ ⊃ ∆(Ωk(M)).

For the reverse inclusion, consider α ∈ (Hk(M))⊥. Define a linear function ℓ : ∆(Ωk(M)) → R by
ℓ(∆β) = 〈α, β〉 for β ∈ Ωk(M). If ℓ is bounded, then by the Hahn-Banach ℓ can be extended to
the whole of Ωk(M). We have thus found a weak solution to the equation ∆η = α. By Lemma 7
there exists a true solution η0 ∈ Ωk(M), which implies that α ∈ ∆(Ωk(M)).

Hence, it suffices to prove that ℓ is a bounded linear functional. We claim that there is a constant
C > 0 for which ‖α‖ ≤ C‖∆α‖ for all α ∈ (Hk(M))⊥. Suppose for contradiction that there exists
a sequence {αi} in (Hk(M))⊥ with ‖αi‖ = 1 and ‖∆αi‖ → 0. By Lemma 8 we can assume that
{αi} is itself Cauchy, so that the linear functional κ : Ωk(M) → R given by κ(β) = limi→∞〈αi, β〉
for β ∈ Ωk(M) is well-defined. Moreover, κ is a bounded and is a weak solution to ∆α = 0. Indeed,
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κ(∆β) = limi→∞〈αi,∆β〉 = limi→∞〈∆αi, β〉 = 0. By Lemma 7 there exists α ∈ Ωk(M) such that
κ(β) = 〈α, β〉. Therefore, αi → α ∈ (Hk(M))⊥. But this contradicts with ∆α = 0. Now we can
use C > 0 to bound ℓ by |ℓ(∆β)| = |〈α, β〉| ≤ ‖α‖ ‖β‖ ≤ C‖∆α‖ ‖β‖. Since α ∈ (Hk(M))⊥ is fixed,
we see that ℓ is indeed bounded.

2.2 Hodge theory for compact Kähler manifolds

Of course, one has analogous results for compact Hermitian manifolds. Since the proof essentially
uses the same techniques, we shall omit it and refer to [3].

Theorem 9. Let X be a compact Hermitian manifold. There exists orthogonal decompositions

Ωp,q(X) = Hp,q
∂ (X)⊕∆∂(Ω

p,q(X)) and Ωp,q(X) = Hp,q

∂̄
(X)⊕∆∂̄(Ω

p,q(X))

with respect to (·, ·) for any p, q. Moreover, Hp,q(X) is finite-dimensional.

Corollary 10. The canonical projection Hp,q

∂̄
(X) → Hp,q(X) is an isomorphism.

For compact Kähler manifolds, Kähler identities show that Hp,q
∂ (X) = Hp,q

∂̄
(X).

Corollary 11 (Hodge decomposition). Let (X, g) be a compact Kähler manifold. Then there is a
decomposition Hk(X,C) = ⊕p+q=kH

p,q(X) that does not depend on the Kähler structure.

Proof. Using Corollary 10, we have Hk(X,C) = Hk(X)C = ⊕p+q=kHp,q(X) = ⊕p+q=kH
p,q(X)

which a priori might depend on the choice of the Kähler metric g. Let g′ be another Kähler
metric and write Hp,q(X, g) and Hp,q(X, g′) for harmonic forms with respect to different metrics.
Let α ∈ Hp,q(X, g) and α′ = α + ∂̄β ∈ Hp,q(X, g′) be such that they represent the same class in
Hp,q(X). We wish to show that they also represent the same class in Hk(X,C). Indeed, since
d∂̄β = d(α′−α) = 0 and that ∂̄β is orthogonal to Hk(X, g)C, by the Hodge theory for Riemannian
manifolds we have ∂̄β ∈ d(Ωk−1

C (X)). Therefore, [α] = [α′] in Hk(X,C).

Recall that there are operators L, Λ, and ∗ on the level of forms that induce decompositions
and isomorphisms. For a compact Kähler manifold X of dimension n, these decompositions and
isomorphisms are compatible with the Hodge decomposition. For instance, using [∆, L] = 0 from the
Kähler identities, we see that L maps harmonic forms to harmonic forms. Since Ln−k is a bijection
on Ωk(X), the induced map Ln−k : Hp,k−p(X) → Hn+p−k,n−p(X) is injective. Surjectivity follows
from considering the dual operator Λ. Note this won’t hold hold if the underlying manifold is not
Kähler. Note also that the operators L : Hp,q(X) → Hp+1,q+1(X) and Λ : Hp,q(X) → Hp−1,q−1(X)
only depend on the Kähler class [ω].

Definition. The primitive cohomology Hp,q(X)prim is the kernel of Λ : Hp,q(X) → Hp−1,q−1(X).

Theorem 12 (Hard Lefschetz theorem). There is a decomposition

Hk(X,R) = ⊕i≥0L
iHk−2i(X,R)prim

that respects the Hodge decomposition, i.e., Hk(X,R)prim ⊗C = ⊕p+q−kH
p,q(X)prim.

Similarly, the Hodge ∗-operator which depends on [ω] acts naturally on H•(X,C) and induces
isomorphisms ∗ : Hp,q(X) → Hn−q,n−p(X). This motivates us to consider the pairing

(α, β) 7→
∫
X
α ∧ β : Hp,q

∂̄
(X)×Hn−p,n−q

∂̄
(X) → C.

Since for α 6= 0, we have ∗ᾱ ∈ Hn−p,n−q

∂̄
(X) and

∫
X α ∧ ∗ᾱ = ‖α‖2 > 0, this pairing is non-

degenerate, so that we have Serre duality Hp,q

∂̄
(X) ∼= Hn−p,n−q

∂̄
(X)∨ on the level of harmonic forms.
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Remark. This is a special case of what is often referred to as Serre duality. In fact, our discussion
of Hodge theory can be generalized for a holomorphic vector bundle E with a Hermitian structure
h on a compact Hermitian manifold X. Accordingly, we define differential operators and Hermitian
inner product. The present discussion is then recovered by taking E to be the trivial bundle with
constant Hermitian structure. In the twisted version, there is a similar non-degenerate natural
pairing Hp,q(X,E) ×Hn−p,n−q(X,E∨) → C. Taking p = 0 and applying the so-called Dolbeault’s
theorem Hp,q(X) ∼= Hq(X,E ⊗ Ωp

X), we recover the common formulation of Serre duality

Hq(X,E) ∼= H0,q(X,E) ∼= Hn,n−q(X,E∨)∨ ∼= Hn−q(X,E∨ ⊗KX)∨,

where KX is the canonical bundle of X. Note that generalizing everything to the twisted version
involves very little additional work.

Let hp,q = dimHp,q(X). We can summarize our previous discussion with the following diagram:

Complex conjugation Hp,q(X) = Hq,p(X) and Hodge ∗-operator provides symmetry under hori-
zontal and vertical reflections respectively. Serre duality guarantees that the diagram is invariant
under rotation by π. Due to its unique diamond-like shape and symmetry, this diagram is often
referred to as the Hodge diamond.

Remark. From a somewhat high-tech viewpoint, Hodge decomposition can be seen as the degen-
eration of a spectral sequence. There is a spectral sequence called the Frölicher spectral sequence
(or Hodge-to-de Rham spectral sequence) of the form

Ep,1
1 := Hp,q(X) ⇒ Hp+q

dR (X)

with Ep,q
∞ := GrpHp+q(X) the associated graded piece of the so-called Hodge filtration defined

by F pHk(X,C) = Im(Hk,•+p(X) → Hk,•(X)). From this perspective, Hodge decomposition of a
compact Kähler manifold is simply the degeneration of this spectral sequence at the E1 page.
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2.3 Applications

There are numerous applications of Hodge theory, like Serre duality that we have discussed. Note
that with Hodge theory, we also get Poincaré duality for Riemannian manifolds for free. Indeed,
since [∆, ∗] = 0, for any harmonic representative α of a nonzero cohomology class in Hk(X), we
have a similar non-degenerate pairing

(α, ∗α) 7→
∫
X
α ∧ ∗α : Hk(X)×Hn−k(X) → R.

The reason for this is that Hodge theory is a refinement of the de Rham theory. We are given a
canonical choice of cohomology class, the harmonic representative, in each de Rham group, and
with this extra piece of data we can do much more.
Let bk := dimCHk(X,C) be the Betti numbers. Another quick application of Hodge theory allows
us to disprove that certain manifolds are Kähler.

Proposition 13. The odd Betti numbers b2k+1 of a compact Kähler manifold X are even.

Proof. This follows from the fact that Hp,q(X) = Hq,p(X) and b2k+1 =
∑

p+q=2k+1 h
p,q.

Example. Recall the Hopf manifold defined on page 2. Consider the two-dimensional case, which
is a compact quotient of C2 \ {0} by the free action of Z via (z1, z2) 7→ (λz1, λz2). Since C2 \ {0}
is simply connected, π(X) = Z. By the Hurewicz theorem H1(X,Z) = Z, and thus b1(X) = Z.
Therefore, Hopf surfaces are not Kähler. In particular, they are not projective.

The strength of Hodge structure as an invariant becomes evident in the Torelli theorem for compact
Riemann surfaces. To state it, we formalize the notion of Hodge structure.

Definition. A rational Hodge structure of weight k consists of a rational vector space H and a
decomposition H ⊗Q C = ⊕p+q=kH

p,q satisfying H
p,q

= Hq,p. A polarization of H is a bilinear
form (·, ·) : H ×H → Q such that

(i) (zkα, zkβ) = (zz̄)k(α, β) for z ∈ C×, and

(ii) (−i)k(·, ·) is symmetric and positive-definite.

Note that the data of a rational Hodge structure is equivalent to the data of a real representation
ρ : C× → GL(HR). The motivation for such a definition comes from Hodge decomposition and the
following relation.

Proposition 14 (Hodge-Riemann bilinear relation). Let X be an n-dimensional compact Kähler
manifold with Kähler class [ω] and nonzero α ∈ Hp,q(X)prim. Then

ip−q(−1)(p+q)(p+q−1)/2

∫
X
α ∧ ᾱ ∧ [ω]n−p−q > 0.

Recall that we have an exponential short exact sequence on a complex manifold X of the form

0 Z OX O×
X 0

f exp(2πif)

where Z is the locally constant sheaf and OX the sheaf of holomorphic functions on X. The Picard
group Pic(X) is identified with H1(X,O×

X), and we define the Jacobian J(X) of to be the kernel
of Pic(X) → H2(X,Z) in the associated long exact sequence, i.e., J(X) = H1(X,OX)/H1(X,Z).
If X is compact Kähler, then using Hodge decomposition one can show that J(X) is in a natural
way a complex torus of dimension b1(X).
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Theorem 15 (Torelli’s theorem). A compact Riemann surface is determined by its Jacobian.

Assuming this result, we shall prove the following.

Corollary 16. A compact Riemann surface is determined by its polarized Hodge structure.

Proof. For a compact Riemann surface C, a polarized Hodge structure is the datum of the lattice
H0(C,Z) in H0(C,Ω1

C)
∨ with a cup product form (·, ·) on H1(C,Z) satisfying the Hodge-Riemann

bilinear relations (α, β) =
∫
C α ∧ β = 0 and i(α, ᾱ) > 0 for any α, β ∈ Ω1,0(C). Given a polarized

Hodge structure then determines the Jacobian variety J(C) = H1(C,OC)/H
1(C,Z), where we

have used the identification H0(C,Ω1
C)

∨ ∼= H1(C,OC) from Serre duality.

The upshot is that Hodge theory encapsulates interesting linear algebraic structure that can be
used to study geometric problems. It can also function as a useful invariant.
We end our discussion with a famous conjecture. Let X be a compact projective n-manifold.

Definition. The fundamental class [Z] ∈ Hp,p(X) of a complex submanifold Z ⊂ X of codimension
p in X is defined by the condition ∫

X
α ∧ [Z] =

∫
X
α|Z

for all α ∈ H2n−2p(X). A class in Hp,p(X,Q) := Hp,p(X) ∩ H•(X,Q) is called analytic if it is
contained in the Q-vector space generated by all fundamental classes [Z] ∈ Hp,p(X,Z).

Hodge Conjecture. Any class in Hp,p(X,Q) is analytic.

This is recognized as one of the seven Millennium Problems. If you happen to prove it, don’t forget
to claim your prize of 1 million dollars from the Clay Mathematics Institute. The following theorem
provides evidence for Hodge Conjecture to be true.

Theorem 17 (Lefschetz theorem on (1, 1)-classes). Let X be a compact Kähler manifold. Then
Pic(X) → H1,1(X,Z) is surjective

Proof. Identifying Pic(X) with H1(X,O×
X), it suffices to show that i : H2(X,Z) → H2(X,OX)

induced by the exponential short exact sequence is the zero map. By Hodge theory we have
H2(X,OX) ∼= H0,2(X). Observe that i factors through H2(X,C), and on which i restricts to the
projection onto H0,2(X). Therefore i is zero on H2(X,Z) ∩H1,1(X).

It can be shown that the image of a line bundle O(D) associated to a Weil divisor D under the
surjection Pic(X) → H1,1(X,Z) is [D]. Using the Kodaira vanishing theorem, we see that any line
bundle on a projective manifold is associated to a divisor. Therefore, any class in H1,1(X,Z) can
be written as a linear combination of fundamental classes of hypersurfaces. This combined with
the Hard Lefschetz theorem shows that the Hodge Conjecture is true for X of dimension ≤ 3.
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