
COMPLEX MULTIPLICATION

YUNHAN (ALEX) SHENG

Abstract. Given an abelian extension of a number field K, what can be said
about the set of algebraic numbers that generates the extension over K? This
is known as Hilbert’s twelfth problem. A special case of the problem, known
as the theory of complex multiplication, is when K is a totally imaginary
quadratic extension of a totally real field number field. We shall give some
motivation in Section 1, before delving into the theory of complex multiplica-
tion of elliptic curves and abelian varieties in Sections 2 and 3, respectively.
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1. Introduction

We assume that the readers are familiar with elliptic curves, although we will
briskly gather the relevant concepts necessary to state the main result. A detailed
exposition of the following can be found in Silverman’s text [13].

By an elliptic curve E, we understand a one-dimensional nonsingular projective
variety of genus one, together with a special point O ∈ E. An elliptic curve E is
defined over a field K, and is denoted by E/K, if its homogeneous ideal

I(E) = {f ∈ K[X] : f is homogenous and f(P ) = 0 for all P ∈ E}
is generated by homogeneous polynomials in K[X]. Here and in what follows, K
will always denote the algebraic closure of K. The absolute Galois group Gal(K/K)
acts on E by acting on the the homogenous coordinates of its underlying projective
plane P2

K . The set of K-rational points of E is
E(K) =

{
P ∈ V : Pσ = P for all σ ∈ Gal(K/K)

}
.
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More concretely, each elliptic curve E/K can be embedded into P2
K so that it is

given by a so-called Weierstrass equation
Y 2Z + a1XY Z + a3Y Z

2 = X3 + a2X
2Z + a4XZ

2 + a6Z
6, a1, · · · , a6 ∈ K.

The special point O has coordinate [0 : 1 : 0]. Conversely, every smooth cubic curve
defined by an equation as such is an elliptic curve E/K with O = [0 : 1 : 0]. We
shall tacitly assume that char(K) 6= 2, 3, in which case the Weierstrass equation
can be reduced via linear substitution to a simpler form:

Y 2Z = X3 +AXZ2 +BZ3, A,B ∈ K.
Two elliptic curves are isomorphic if and only if they have the same j-invariant,
which is defined by

j(E) = −1728(4A)3/∆, where ∆ = −16(4A3 + 27B2).

An elliptic curve is endowed with a group structure with points of E as elements.
Using the group law, we may define the multiplication-by-m map on E by

[m] : P 7→ mP := P + P + . . .+ P︸ ︷︷ ︸
m times

.

An isogeny φ between two elliptic curves E1 and E2 is a morphism of varieties
satisfying φ(O) = O. For instance, [m] : E → E is an isogeny. Consider the ring
End(E) of isogenies from E to itself, such as [m]. A natural question to ask is:

Question. Is every element of End(E) of the form [m] for some m ∈ Z, or is
End(E) strictly larger than Z?

This question is answered in Theorem 1.1. We need the following definition.

Definition. Let K be a number field, i.e., a finite extension of Q. An order R of
K is a subring of K that is finitely generated as Z-module and spans K over Q.

For example, Z[i] and {a + 2bi : a, b ∈ Z} are both orders of Q(i). In fact, the
ring of integers is the largest order of a number field.

Theorem 1.1. Let E/C be an elliptic curve. Then either End(E) = Z or End(E)
is isomorphic to an order of Q(

√
−D) for some integer D > 0.

For this theorem, we need some facts about elliptic curves over C. A lattice
Λ ⊂ C is a discrete subgroup of C that spans C over R. Two lattices Λ1,Λ2 ⊂
C are homothetic if Λ2 = αΛ1 for some α ∈ C×. For any elliptic curve E/C,
there is a lattice Λ ⊂ C unique up to homothety such that there is a Lie group
isomorphism C/Λ ∼= E(C). The complex-analytic map C/Λ→ E(C) is referred to
as a uniformization. In fact, there is an equivalence of categories between
(1) elliptic curves over C with isogenies, and
(2) lattices Λ ⊂ C up to homothety with

Hom(Λ1,Λ2) = {α ∈ C : αΛ1 ⊂ Λ2}.

Proof of Theorem 1.1. Let Λ ⊂ C be the lattice associated to E/C. Then up to
homothety, we may replace Λ by the lattice Z + τZ for some τ ∈ C \ R. Since
End(E) ∼= {α ∈ C : αΛ = Λ}, for any α ∈ End(E) there exist m,n, p, q ∈ Z such
that α = m+ nτ and ατ = p+ qτ . Eliminating τ from these equations yields

α2 − (m+ q)α+mq − np = 0,
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which shows that End(E) is an integral extension of Z. Suppose α ∈ End(E) but
α 6∈ Z. Then n 6= 0, and eliminating α from the equation above gives

nτ2 + (m− q)τ − p = 0.

Since τ 6∈ R by construction, this shows that Q(τ)/Q is imaginary quadratic, and
thus is of the form Q(

√
−D) for some integer D > 0. Now End(E) ⊗Q = Q(τ)

verifies that End(E) is an order. □

Definition. An elliptic curve E/C has complex multiplication (or CM for short)
by R if R = End(E) is an order of an imaginary quadratic field Q(

√
−D).

Now we are ready to state our main result. We assume familiarity with algebraic
number theory and with the statements of class field theory. For reference of the
former, see Sutherland [14]; for the latter see Poonen [7] and Kedlaya [3].

Recall the Kronecker-Weber theorem, which says that the ray class field of Q of
conductor N∞ is generated by a primitive Nth root of unity ζN . In particular, the
maximal abelian extension (absolute class field) of Q is the union of all cyclotomic
extensions of Q. Recall also the Hermite-Minkowski theorem, which says that the
maximal unramified extension (Hilbert class field) of Q is just Q itself. In other
words, there are no proper unramified extensions over Q. The theory of complex
multiplication provides an analogue of these results with base field Q(

√
−D) in

place of Q. Specifically:

Theorem 1.2. Let R be an order of an imaginary quadratic field K/Q. Let E/C
be an elliptic curve with CM by R. Then

(i) K(j(E)) is the maximal unramified extension of K;
(ii) if x(Etors) is the set of x-coordinates of torsion points (i.e., points of finite

order) of E, then K(j(E), x(Etors)) is the maximal abelian extension of K.
For (ii) we assume that j(E) 6= 0, 1728. Note that the group law on elliptic curves
allows one to talk about the order of points.

Section 2 of this paper is devoted to proving Theorem 1.2. The upshot is that
studying intrinsically geometric objects such as elliptic curves yields fruitful arith-
metic information. This is the idée fixe of complex multiplication. In Section 3 we
study abelian varieties, which are generalizations of elliptic curves, and from which
even more arithmetic information will be extracted.

2. CM of Elliptic Curves

In what follows, K will always denote an imaginary quadratic field, and Ell(R)
the space of all elliptic curves E/C with CM by R. We also assume that R is the
ring of integers of K, though this is not always necessary. The main reference for
our exposition is Silverman [12].

2.1. From algebraic action to analytic action. The goal of this subsection is
to establish two important actions on Ell(R), one analytic and one algebraic. This
sets up for the proof of Theorem 1.2 in the subsequent subsections.

We start with an easy observation: a nonzero fractional ideal a of K is a lattice
in C, and thus gives rise to an elliptic curve Ea/C with CM by R. Two lattices
are homothetic if as ideals they belong to the same ideal class. This leads us to
consider the ideal class group Cl(R) of R. Let a be the image of a in Cl(R).
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Proposition 2.1. There is a simply transitive action of Cl(R) on Ell(R) via
a ∗ EΛ = Ea−1Λ.

Therefore #Ell(R) = #Cl(R). In particular Ell(R) is finite.
Proof. See Silverman [12] □

The action of a is analytic, inducing a complex-analytic map C/Λ → C/a−1Λ.
The kernel of this isogeny EΛ → Ea−1Λ is the group of a-torsion points

E[a] = {P ∈ E : αP = 0 for all α ∈ a},
which is a free R/a-module of rank one, and thus #E[a] = NmK/Q a. A proof of
this assertion may be found in Silverman [12].

Now we turn to study the algebraic action of Gal(K/K) on Ell(R). However,
elliptic curves in Ell(R) are defined over C, not K. So necessarily we need the
following lemma to modify the field of definition.
Lemma 2.2. The j-invariant of E ∈ Ell(R) is an algebraic number.
Proof. Since End(Eσ) = End(E) for any σ ∈ Aut(C), by Propostion 2.1 Eσ is one
of the finitely many isomorphism classes of elliptic curves determined by j(Eσ).
Since the action of σ naturally extends to the j-invariant, we have j(Eσ) = j(E)σ,
which takes on only finitely many values as σ ranges over Aut(C). The claim now
follows from the fact that [Q(j(E)) : Q] is finite. □
Remark 2.3. An important observation from the proof of Lemma 2.2 is that
[Q(j(E)) : Q] ≤ h, where h = #Cl(R) is the class number of K. This will be used
later in Section 2.2, where we shall obtain the equality [Q(j(E) : Q] = h. Another
fact is that j(E) is actually an algebraic integer, though we won’t proof this.

For E ∈ Ell(R), consider the universal elliptic curve E′/K(j(E)) given by

y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
,

which has the same j-invariant as E, j(E′) = j(E). Hence, Ell(R) can be identified
with Q-isomorphism classes of elliptic curves E/Q with CM by R obtained by
identifying elliptic curves with same j-invariant. Hereafter, we shall tacitly assume
that each element of Ell(R) has a model defined over Q.

For the next lemma, recall that a morphism ϕ of varieties is defined over a field
L if ϕσ = ϕ for all σ ∈ Gal(L/L).
Lemma 2.4. Let E,E′ be elliptic curves defined over a field L ⊂ C. Then

(i) if E ∈ Ell(R), then every element in End(E) is defined over RL;
(ii) there exists a finite extension L′/L such that every element in Hom(E,E′) is

defined over L′.
Proof. See Silverman [12]. □

Since an elliptic curve E ∈ Ell(R) has a model defined over Q, every element in
End(E) is defined over RQ = Q. Now it makes sense to talk about the Gal(K/K)-
action on Ell(R). Since the action of Cl(R) is simply transitive by Proposition 2.1,
for each σ ∈ Gal(K/K) there exists a unique a ∈ Cl(R) such that Eσ = a∗E. This
defines a map F : Gal(K/K)→ Cl(R) which transfers the algebraic action into an
analytic one.
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Theorem 2.5. The map F : Gal(K/K)→ Cl(R) characterized by Eσ = F (σ) ∗E
is a well-defined injective group homomorphism.

Proof sketch. To see that F does not depend on the choice of E, let E1, E2 ∈ Ell(R)
and suppose that Eσ1 = a1 ∗E1 and Eσ2 = a2 ∗E2. Since Cl(R) acts transitively on
Ell(R), there exists some b such that E2 = b ∗ E1. Hence

(b ∗ E1)
σ = a2 ∗ (b ∗ E1) = (a2ba

−1
1 ) ∗ Eσ1 .

It remains to show that (a∗E)σ = aσ∗Eσ. We know that if R is a Dedekind domain
with fractional ideal a, then a−1M ∼= HomR(a,M) for M a torsion-free R-module
(see Silverman [12]). Therefore HomR(a,Λ) = a−1Λ and HomR(a,C) = a−1C = C.
The idea is that we want to describe HomR(a, E) as an algebraic group, not merely
as an R-module. Let

P : Rm
A−→ Rn → a→ 0, Q : 0→ Λ→ C→ E → 0

be two exact sequences and consider the double complex HomR(P,Q) spanned by
P and Q. Applying the snake lemma we obtain another exact sequence

0→ a−1Λ→ C→ ker(En
A⊺
−−→ Em)→ Λn/A⊺Λm,

where A⊺ is the transpose of A. Since a ∗E = C/a−1Λ is connected and Λn/A⊺Λm

is discrete, we conclude that a ∗ E is the identity component of kerA⊺, which is a
subvariety of En. Now since σ commutes with A⊺ : En → Em, the map F is indeed
well-defined. To check that F is an injective group homomorphism is routine. □

The crux of the proof of Theorem 2.7 is the following finiteness result of Propo-
sition 2.6, which says that only finitely many primes are “bad”. As is often the
case, the finiteness result is used in conjunction with Chebotarev’s density theorem
(which is essentially an infiniteness result, see for example Sutherland[14]) in the
following way: since there are infinitely many primes of the same Galois conjugacy
class, it doesn’t hurt discarding only finitely many “bad” ones. To describe what
constitutes as “bad” in the case at hand, we recall the definition of a Frobenius
element.

Let L/K be a Galois extension and P a prime lying over an unramified prime p
of K. Let κP and κP be the corresponding residue fields. The Frobenius element
σP ∈ Gal(L/K) is the generator of Gal(κP/κp). If L/K is abelian, then σP = σP′

for any other prime P′ lying over p, so we simply write σp for σP.

Proposition 2.6. There is a finite set of rational primes S ⊂ Z such that if p 6∈ S
is a prime that splits completely in K, say pR = pp′, then F (σp) = p.

Proof. By Lemma 2.4, there is a finite extension L/K over which both a complete
set {Ei} of representatives of K-homomorphism classes in Ell(R) and the isogenies
in between are defined. Let S be the set of rational primes p that satisfy one of the
following conditions

(i) p ramifies in L;
(ii) Ei has bad reduction at some prime P of L for some i;
(iii) NmL/Q(j(Ei)− j(Ek)) contains some nonzero integer multiple of p for i 6= k.
Then S is finite. Now suppose that p 6∈ S and p = pp′ in K. Let P be a prime of L
lying over p. Let a ⊂ R be an integral ideal such that (a, p) = 1 and ap = (α) for
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some α ∈ K×. We have the following commutative diagram

C/Λ C/p−1Λ C/a−1p−1Λ = C/(α−1)Λ C/Λ

E p ∗ E a ∗ p ∗ E = (α) ∗ E E
ϕ ψ λ

z 7→αzz 7→zz 7→z

,

where the vertical maps are uniformizations. Let ω be the invariant differential (see
Silverman [13]) of E. Then tracing around the diagram we get (λ ◦ψ ◦ φ)∗ω = αω.
Since P | α, in the reduction modulo P we have

( ˜λ ◦ ψ ◦ φ)∗ω̃ = (λ̃ ◦ ψ̃ ◦ φ̃)∗ω̃ = 0

instead, so λ̃ ◦ ψ̃ ◦ φ̃ is inseparable, as a nonconstant map of curves is separable if
and only if the induced map on differentials is nonzero. By definition of ψ,

degψ = #E[a] = NmK/Q a.

Since the reduction Hom(E1, E2) → Hom(Ẽ1, Ẽ2) is injective and thus preserves
degrees (see Proposition II.4.4 of Silverman [12]), we obtain

deg ψ̃ = degψ = NmK/Q a,

which is prime to p, so that ψ̃ is separable. Similarly, since deg λ̃ = deg λ = 1, λ̃ is
also separable, which implies that φ̃ is inseparable. Any inseparable map factors
through a p-th power Frobenius map (see Silverman [13]), but since

deg φ̃ = deg φ = NmK/Q p = p,

φ̃ must be the p-th power Frobenius map, that is, Ẽ(p) ∼= p ∗ E. Hence
j(p ∗ E) = j(E)p = j(E)NmK/Q p ≡ j(E)σp = j(Eσp) = j(F (σp) ∗ E) (mod P).

Since p 6∈ S, j(Ei) ∼= j(Ek) (mod P) if and only if Ei ∼= Ek, so p ∗ E = F (σp) ∗ E.
But Cl(R) acts simply on Ell(R), so p = F (σp). □

2.2. Constructing the Hilbert class field. The goal of this subsection is to
prove the first half of Theorem 1.2, which is contained in Theorem 2.7. Recall that
elliptic curves in Ell(R) have well-defined models over Q.

Theorem 2.7 (Weber-Fueter). Let E/Q ∈ Ell(R). Then
(i) K(j(E)) is the Hilbert class field H of K;

(ii) [Q(j(E)) : Q] = [K(j(E)) : K] = h, where h = #Cl(R) is the class number;
(iii) let E1, · · · , Er be a complete set of representatives for Ell(R). Then j(E1), · · · ,

j(Er) is a complete set of conjugates for j(E) under Gal(K/K).

Before diving into the proof, let us recall some concepts from algebraic number
theory. They can be read in detail from Sutherland [14]. A modulus m of K is a
formal product

m =
∏
v

vev

where the product is taken over all places v of K. The exponent ev ∈ Z are zero
for all but finitely many v’s. In particular, if v is a real place, then ev ∈ {0, 1},
and if v is a complex place then ev = 0. Intuitively, one thinks of a modulus as a
briefcase of data of an integral ideal of OK along with a subset of real places.
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The concept of modulus is applied in the classical version of global class field
theory. Let L/K be an abelian extension. Let m be a modulus of K that is divisible
by all primes that ramify in L/K. Let I(m) be the group of fractional ideals of K
coprime to m. The global Artin map

ΘL/K : I(m)→ Gal(L/K)

sends p to σp. Then Artin Reciprocity claims that
P (m) = {(α) : α ∈ K∗, α ≡ 1 (modm)}

is in the kernel of the ΘL/K for some appropriate choice of m. The smallest such
m is called the conductor of L/K, which we denote by mL/K . Roughly speaking,
the conductor is the minimal compilation of “bad” primes multiplied together.

Proof. (i) Let L be the fixed field of the kernel of F : Gal(K/K)→ Cl(R). Then
Gal(K/L) = {σ ∈ Gal(K/K) : Eσ = E}

= {σ ∈ Gal(K/K) : j(E)σ = j(E)} = Gal(K/K(j(E))).

Hence L = K(j(E)). Since F is injective, K(j(E))/K is abelian. Consider

I(mL/K) Gal(L/K) Cl(R)FΘL/K
.

For any a ∈ I(mL/K), by Chebotarev’s density theorem (Sutherland [14] Theorem
28.9) there exist infinitely many primes in I(mL/K) in the same P (mL/K)-class as
a that split completely in L. Choose one such p ∈ I(mL/K) that does not lie over
any primes in the finite set S described in Proposition 2.6. That is, there exists
α ∈ K× such that a = αp and α ≡ 1 mod mL/K . Hence by Proposition 2.6,

F ◦ΘL/K(a) = F ◦ΘL/K(p) = p = a,

so that F ◦ ΘL/K is just the natural projection. Therefore, any principal ideal
(α) ∈ I(mL/K) is in the kernel of F ◦ ΘL/K , and thus (α) ∈ kerΘL/K , as F
is injective. But mL/K is the smallest modulus m for which m | α − 1 implies
ΘL/K((α)) = 1, so mL/K = (1). Since mL/K is divisible by primes that ramify in
L, we conclude that L/K is unramified.

On the other hand, since I(mL/K) = I((1)) → Cl(R) is surely surjective, F is
also surjective. Therefore

[L : K] = #Gal(L/K) = #Cl(R) = #Gal(H/K) = [H : K],

which shows that L = H, the Hilbert class field of K.
(ii) By (i) we have [K(j(E)) : K] = h. We also have [Q(j(E)) : Q] ≤ h by

Remark 2.3. Hence [Q(j(E)) : Q] = h follows from the following diagram

K(j(E))

K Q(j(E))

Q

≤2

≤h

h

2

.

(iii) Since F : Gal(K/K) → Gal(L/K) ∼= Cl(R) is surjective, Gal(K/K) acts
transitively on a complete set of representatives of Ell(R). □
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Corollary 2.8 (Hasse). For any nonzero fractional ideal a of K,

j(E)ΘL/K(a) = j(a ∗ E).

Here ΘL/K(a) acting on E is an algebraic action of the Galois group on an
algebraic number. This corollary translates this purely Galois-theoretic algebraic
action into a lattice action on E as an analytic object. This is a recurring theme
in the theory of complex multiplication.

2.3. Constructing the absolute class field. In this section we prove the second
half of Theorem 1.2, which is achieved in Theorem 2.9. We denote the Hilbert class
field of K by H. Recall from the previous subsection that H = K(j(E)).

Definition. Let E/H ∈ Ell(R) be given by (assuming char(K) 6= 2, 3)
y2 = x3 +Ax+B, A,B ∈ H.

Define the Weber function to be the map h : E/H → P1 given by

h(P ) =


x, AB 6= 0

x2, B = 0

x3, A = 0

, for P = (x, y) ∈ E.

In Theorem 1.2 we made the assumption that j(E) 6= 0, 1728. With the help
of the Weber function, this assumption can be relaxed. Indeed, j(E) 6= 0, 1728
is equivalent to saying AB 6= 0, in which case taking the x-coordinate of torsion
points suffices. However, if j(E) = 1728, in which case B = 0, then u4 = 1,
where u is such that every automorphism of E is given by a substitution x = u2x′

with u−4A = A and u−6B = B (see Silverman [13] Chapter III §10). To kill the
additional automorphisms that give no additional arithmetic information, we need
to take x2 instead of x. Similarly if j(E) = 0, in which case A = 0, then we need
to take x3 to account for the redundancy. Therefore, taking the Weber function
guarantees Aut(E)-invariance, a crucial property that will be used later.

Theorem 2.9. Let E/H ∈ Ell(R). If m is a modulus of K, then K(j(E), h(E[m]))
is the ray class field of m. In particular, K(j(E), Etors)) is the maximal abelian
extension (i.e., absolute class field) of K.

The proof depends heavily on the following Frobenius lifting lemma.

Lemma 2.10. Let p | p | P be a tower of primes in Q ⊂ K ⊂ H. Suppose that
E/H ∈ Ell(R). For all but finitely many primes p of K that satisfy ΘH/K(p) = 1,
the p-th power Frobenius map φ on the reduction Ẽ of E mod P lifts to a unique
π ∈ R such that p = πR and the following diagram commute:

(2.11)

E E

Ẽ Ẽ

π

ϕ

.

Proof sketch. Excluding finitely many primes p ∈ S as in the proof of Proposition
2.6, we get a purely inseparable map

Ẽ → p̃ ∗ E ∼= Ẽσp
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of degree p, which factors through φ followed by a map ε of degree one:

Ẽ Ẽ(p) Ẽσp
ϕ ϵ .

We wish to show that Ẽ(p) lifts directly to Eσp , that is, ε is an automorphism. It
suffices to show that ε is the reduction of some ε0 ∈ Aut(Eσp),

E Eσp Eσp

Ẽ Ẽ(p) Ẽσp
ϕ ϵ

π ϵ0

,

so that we may replace π by ε−1
0 ◦ π, which is of degree p. Let σp = ΘH/K(p) = 1.

Then we obtain the desired square (2.11). The uniqueness of π follows from the
fact that the reduction Hom(E1, E2)→ Hom(Ẽ1, Ẽ2) is injective.

To show that ε comes from some ε0 ∈ Aut(Eσp), it is equivalent to showing
that ε commutes with the image of End(Eσp) in the reduction (see Silverman [12]
Lemma II.5.2). With this in mind, for any α ∈ End(E), we compute

α̃ ◦ ε ◦ φ = α̃ ◦ π̃ = π̃ ◦ α̃ = ε ◦ φ ◦ α̃ = ε ◦ α̃ ◦ φ.
Therefore α̃ ◦ ε = ε ◦ α̃, and we are done. □

Now we proceed with the proof of Theorem 2.9.

Proof of Theorem 2.9. Let L = H(h(E[m])). In order to show that L is the ray
class field of modulus m, by class field theory it suffices to show that ΘL/K(p) = 1
if and only if p ∈ P (m). Excluding finitely many primes as before, we may assume
that p has residue field degree one in K and satisfies Lemma 2.10.

Suppose p ∈ P (m), so that p = µR for some µ ∈ R with µ ≡ 1 (mod m). Since
p is principal, ΘH/K(p) = 1. Applying Lemma 2.10 we get (2.11) where p = πR.
Hence there exists a unit ξ ∈ R× with π = ξµ. Let P ∈ E[m] be an m-torsion point.
Then by commutativity of the square (2.11) we have

˜PΘL/K(p) = φ(P̃ ) = π̃(P ).

A nontrivial fact says that the reduction E → Ẽ modulo p is injective on torsion
points of order prime to p. Excluding finitely many primes we may assume the
injectivity and therefore conclude that PΘL/K(p) = π(P ). Since the map induced
by a unit ξ is an automorphism of E, by the Aut(E)-invariance of h,

h(P )ΘL/K(p) = h(PΘL/K(p)) = h(π(P )) = h(µ(P )) = h(P ),

as P ∈ E[m] and µ ≡ 1 (mod m). Therefore, ΘL/K(p) = 1 as desired.

Conversely, suppose that ΘL/K(p) = 1. Choosing P ∈ E[m] and σ ∈ Gal(K/K)
with σ|Kab = ΘKab/K(p), we may again apply (2.11) and compute

h̃(π̃(P̃ )) = h̃(π̃(P )) = h̃(φ(P̃ )).

But as in the proof of Lemma 2.10, the p-th power Frobenius φ lifts to σ, so that

h̃(φ(P̃ )) = h̃(P̃σ) = h̃(P )σ = h̃(P ) = h̃(P̃ ),

as σ|L = ΘL/K(p) = 1 = ΘH/K(p) = σ|H . Hence h̃(π̃(P )) = h̃(P̃ ), which implies
that there exists some ξ ∈ Aut(E) such that π̃(P̃ ) = ξ̃(P̃ ). Injectivity of reduction



10 YUNHAN (ALEX) SHENG

on torsion points allows us to conclude that (π − ξ)P = O. Since E[m] is a free
R/m-module of rank one, there exists a single ξ ∈ R× such that π − ξ annihilates
all of E[m]. Therefore ξ−1π ≡ 1 (mod m), which implies that p ∈ P (m). □

Example (A numerical illustration). The following computation is taken from
Silverman [12]. Consider an elliptic curve given by

E : y2 = x3 + x.

Then j(E) = 1728, so E possesses nontrivial automorphisms. The endomorphism

α : (x, y) 7→
(
α−2

(
x+

1

x

)
, α−3y

(
1− 1

x2

))
, α = 1 +

√
−1

is of degree two, but is different from the multiplication-by-two map [2] ∈ End(E).
Hence E has CM. In fact, it has CM by the Gaussian integers Z[i]. Since

E[2] = {O, (0, 0), (±1, 0)} ,

one sees that the ray class field of Q(i) of modulus (2) is just Q(i). Finding the
x-coordinates of 3-torsion points amounts to solving the equation

3x4 + 6x2 − 1 = 0 =⇒ x = α,−α, 1√
3α
,− 1√

3α
, α =

√
2
√
3− 3

3
.

Since the Weber function for E is h(x, y) = x2, we obtain the ray class field of Q(i)

of modulus (3) is Q(i,
√
3). The x-coordinates of 4-torsion points satisfy

x6 + 5x4 − 5x2 − 1 = 0 =⇒ x = ±1,±γ,±γ−1, γ =
√
−1

(√
2− 1

)
.

Hence the ray class field of Q(i) of modulus (4) is Q(i,
√
2).

We end the section by stating the so-called Main Theorem of Complex Multipli-
cation. The reason that we state this result is because it can be generalized rather
directly to the case of abelian varieties (see Theorem 3.10). Note that we have
essentially developed all the tools necessary to prove the theorem, but we choose
to omit the proof as it is lengthy and does not directly concern the construction of
class fields, which was our main goal.

We again recollect some notions from algebraic number theory. For details see
Sutherland [14]. The idèle group of K is the topological group

A×
K :=

{
(av) ∈

∏
v

K×
v : av ∈ O×

v for all bu t finitely many v
}
,

where v ranges through all places of K. Similar to the role that modulus play in
the classical global class field theory, the idèle group packs together information of
all places of K. The global Artin map defined by

A×
K/K

× → Gal(Kab/K)

s 7→ [s,K]

will be denoted by s 7→ [s,K]. If L/K is finite abelian and (s) is not divisible by
any primes that ramify in L, then [s,K]|L = ΘL/K(s) is the local Artin map.

Note that multiplication by an idèle s amounts to multiplying the p-primary of
s locally as ideals, and then patching together places p to get the global result.
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Theorem 2.12 (The main theorem of CM of elliptic curves). For E/C ∈ Ell(R)

fix a uniformization ξ : C/a ∼−→ E for some fractional ideal a of K. Fix σ ∈ Aut(C)
and choose s ∈ A×

K with [s,K] = σ|Kab . There exists a unique uniformization

ξ′ : C/s−1a
∼−→ Eσ(C)

such that the following diagram commutes:

K/a K/s−1a

E(C) Eσ(C)

ξ

σ

s−1

ξ′ .

Proof. See Silverman [12]. □

3. CM of Abelian Varieties

The corresponding theory of CM for abelian varieties is much more profound,
initially established by Shimura, Taniyama, and Weil in the 1950s. We won’t be
able to develop all the proofs rigorously and leave that task to a serious textbook
such as Milne [5]. We are content with understanding some important statements.

3.1. A primer on abelian varieties. The canonical reference for abelian varieties
is Mumford’s text[6]. We shall assume that the reader has some exposure to scheme
theory as introduced in, for instance, Hartshorne [2]. We shall frequently point out
whether or not the construction parallels that of elliptic curves.

Definition. Let S be a scheme. A group scheme G over S is a scheme such that for
any S-scheme T , the hom-set Hom(T,G) is endowed with a group structure that is
functorial in T 1. Let K be a field. An abelian variety A/K is a reduced, connected,
and projective group scheme over Spec(K).

Remark 3.1. By a result known as the rigidity lemma, the group law on abelian
varieties is commutative, making A(K) into an abelian group.

To see how abelian varieties generalize elliptic curves, note that the set A(K)
of K-rational points forms a group. Also note that reduced groups schemes over a
field are smooth. Hence elliptic curves are by definition abelian varieties. In fact,
they are abelian varieties of dimension one.

A morphism of abelian varieties is a morphism of varieties compatible with the
group structure, that is, it commutes with multiplication, identity, and inverse.

Definition. Let f : A → B be a morphism of abelian varieties. Then f is an
isogeny if it is surjective and dimA = dimB. The degree of f is the degree of the
field extension K(X)/f∗K(Y ). We set deg f = 0 if f is not an isogeny.

An abelian variety is simple if there is no nontrivial abelian subvariety. Now we
show that the category of abelian varieties up to isogeny is a semisimple category,
that is, every abelian variety is isogenous to a direct sum of simple ones. We need
the following lemma, known as the Poincaré’s complete reducibility theorem:

1By the Yoneda lemma, it is equivalent to say that G is a group object in the category of
S-schemes.



12 YUNHAN (ALEX) SHENG

Lemma 3.2. If A′ is an abelian subvariety of A, then there exists an abelian
subvariety A′′ of A such that A′ ×A′′ → A is an isogeny.

Let End(A) be the endomorphism ring of a simple abelian variety A. It can be
shown that the endomorphism algebra End0(A) := End(A) ⊗Z Q is a Q-division
algebra. Now suppose that A is isogenous to An1

1 × · · · × Anr
r with each Ai simple

and Ai non-isogenous to Aj for i 6= j. Then from the fact that
End(X × Y ) ∼= End(X)⊕Hom(X,Y )⊕Hom(Y,X)⊕ End(Y )

we are able to conclude that

End0(A) ∼=
r∏
i=1

Mni
(Di),

where Mni
(Di) is the ring of ni × ni matrices with coefficients in Di = End0(Ai).

Proposition 3.3. For an abelian variety A, End0(A) is a semisimple Q-algebra.

Proof sketch. A semisimple Q-algebra is a finite-dimensional Q-algebra that can be
written as a product of simple subalgebras (i.e., an algebra that has no nontrivial
proper two-sided ideal). Since End0(A) is already a product of simple subalgebras,
it remains to prove the Q-finiteness. Let dimA = g. The `n-torsion subgroup is
given by

A[`n] ∼=

{
(Z/`nZ)2g, char(K) - `
(Z/`nZ)i for some i ≤ g, char(K) = `

.

Intuitively, view A as a complex torus, which is topologically a product of 2g copies
of S1. On each copy of S1, points of order `n forms a copy of Z/`nZ. Hence the
`-adic Tate module of A, defined by the inverse limit

Tℓ(A) = lim←−
n

A[`n],

has finite Zℓ-rank. Now it suffices to show that the map
End(A)⊗ Zℓ → EndZℓ

(Tℓ(A))

is injective, since tensoring with Qℓ we get
Qℓ ⊗Q End0(A) ↪→ EndQℓ

(Qℓ ⊗Zℓ
Tℓ(A)) ,

which shows that End0(A) is finite over Q since the target is finite over Qℓ. The
proof of injectivity is analogous to the ingenious proof in the elliptic curve case (see
Silverman [13] Theorem III.7.4). □

Recall that for an elliptic curve E/C, there is a uniformization E(C) ∼= C/Λ for
some lattice Λ ⊂ C. Abelian varieties A/C of dimension g is isomorphic to Cg/Λ
for some lattice Λ ⊂ Cg. But the converse, that any complex torus Cg/Λ can be
realized as an abelian variety, is only true in general for g = 1, that is, for elliptic
curves. That is because that a nice embedding of Cg/λ into the projective space
might not exist.

In algebraic geometry, this undesirable situation is remedied by fixing the data
of an ample line bundle on the abelian variety. Recall that a line bundle (i.e.,
free OA-module of rank one) is ample if taking large enough tensor power of itself
induces an embedding into projective spaces. This is the concept of polarization.
Here we shall define polarization complex-analytically:
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Definition. A complex torus Cg/Λ is polarized if on it there exists an alternating
R-bilinear form E : Cg ×Cg → R, called the Riemann form, that satisfies:

(i) E(Λ× Λ) ⊂ Z;
(ii) the bilinear form (z, w) 7→ E(z,

√
−1w) is symmetric and positive-definite.

We explain three reasons why fixing a polarization is nice:
(i) A complex torus Cg/Λ admitting a polarization is an abelian variety. Hence

we have an equivalence of categories from the category of abelian varieties
over C to the category of polarizable complex tori.

(ii) The automorphism group of a polarized abelian variety is finite. (For elliptic
curves this is always true. In fact, the order of the automorphism groups can
only be 2, 4, 6, 12, or 24. See Chapter III §10 of Silverman [13].)

(iii) As we shall see in Section 3.3, fixing a polarization gives a more precise CM-
type information. It is an indispensable piece of information in the field of
moduli that allows us to construct class fields.

3.2. Abelian varieties with CM. Recall that an elliptic curve E has complex
multiplication if the endormorphism algebra End(E)⊗Q is an imaginary quadratic
field. This is now generalized to so-called CM-algebras, which are totally imaginary
quadratic extensions of a totally real field.

We start with some results from algebra.
Fix a field K of characteristic zero. Let B be a semisimple algebra over K. The

Wedderburn–Artin theorem says that B decomposes into a finite product of matrix
algebras Bi =Mni

(Di) over K-division algebras Di. Let Ki be the center of each
Di. Then [Bi : ki] is a square. We define the reduced degree of B over K to be

[B : k]red :=
√

[Bi : ki][ki : k].

Equivalently, it is the degree of the maximal étale k-subalgebra (finite product of
finite separable extensions of k).
Lemma 3.4. Notation as above, if M is a faithful B-module, then

dimkM ≥ [B, k]red,

where equality holds if and only if Bi are matrix algebras over ki.
Now we come back to abelian varieties. Recall from the proof of Theorem 1.1 that

for an elliptic curve E isomorphic to C/Λ, it is useful to interpret its endomorphism
ring complex-analytically as

End(E) ∼= {α ∈ C : αΛ = Λ}.
Let A/C be an abelian variety isomorphic to a complex torus Cg/Λ. The following
analogous interpretation is referred to as an analytic representation:
(3.5) End0(A) ∼= {M ∈Mg(C) :MQΛ ⊂ QΛ},
as it is a g-dimensional complex representation of End0(A). Since RΛ = Cn, any
C-linear endomorphism that is identity on QΛ is identity on the whole of Cn.
Hence QΛ is a faithful End0(A)-module. Applying Lemma 3.4,

[End0(A) : Q]red ≤ dimQ QΛ = 2dimA.

Definition. An abelian variety A/C has complex multiplication (or CM) if
[End0(A) : Q]red = 2dimA.
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Therefore, if A has CM, then End0(A), which is a product of matrix algebras
Mni(Di), contains an étale Q-subalgebra of dimension 2 dimA. It follows that
each algebra Di = End0(Ai) has degree 2 dimAi over Q. That is to say, A has CM
if and only if each of its simple factors has CM.
Definition. A CM-field K is a totally imaginary quadratic extension of a totally
real field. A CM-algebra is a finite product of CM-fields.

Obviously imaginary quadratic fields Q(
√
−D) are examples of CM-fields. For

other examples, Q(ζN )/Q(ζN + ζN ) is a CM-field for N > 2.
The following classification result that we won’t prove relates the definition of

CM of abelian varieties to CM-fields.
Theorem 3.6. An abelian variety A/C has complex multiplication if and only if
one of the following cases holds

(i) A is simple and End0(A) is a CM-field of degree 2 dimA over Q;
(ii) A is isotypic, that is, A is isogenous to An0 for some simple A0, and End0(A)

contains a number field of degree 2 dimA over Q;
(iii) End0(A) contains an étale Q-subalgebra of dimension 2 dimA.
In cases (ii) and (iii), the number field (resp. étale Q-subalgebra) can be chosen
to be a CM-field (resp. CM-algebra) invariant under some involution induced by a
polarization of A. The involution is called Rosati involution.

Recall that for elliptic curves E, there are only two embeddings End(E) ↪→ C.
We tacitly choose the canonical one that preserves the invariant differential (see
Silverman [12] Proposition II.1.1). But for a CM-field K, since every complex
embedding φ : K ↪→ C commutes with complex conjugation ι, it is important to
choose one from each duple {φ, ι ◦ φ}. This motivates the following definition.
Definition. A CM-type on a CM-field K is a set Φ of complex embeddings K ↪→ C
such that Φ ∩ ιΦ = ∅ and Φ ∪ ιΦ is the set of all complex embeddings of K. For
CM-algebras, a CM-type amounts to choosing a CM-type for each of its factors.

A technicality in the case of abelian varieties is that automorphisms σ ∈ Aut(C)
permutes Φ. But as we shall see, for abelian varieties A and Aσ to be isogenous, σ
has to preserve the CM-type of K = End0(A). Hence we need some field K∗ over
which automorphisms σ ∈ Aut(C/K∗) preserve (K,Φ).
Definition. The reflex field K∗ of CM-type (K,Φ) is the CM-field

K∗ := Q

∑
ϕ∈Φ

φ(x)


x∈K

 .

Equivalently, by identifying Φ t ιΦ with Gal(K/Q), K∗ is the fixed field of set of
σ ∈ Gal(Q/Q) such that σΦ = Φ. Inverses of elements in Φ, viewed as elements of
Gal(K/K), restricted to K∗ give a CM-type Φ∗ on K∗ called the reflex type.

If K is an imaginary quadratic field as in the elliptic curve case, then K = K∗.
Hence in the Theorem 2.12 it suffices to take σ ∈ Aut(C/K).
Definition. Let (K,Φ) be a CM-type. The reflex norm is the map NΦ : K∗ → C
defined by NΦ(x) =

∏
ψ∈Φ∗ ψ(x).

The reflex norm can be extended to a map on the idèle A×
K∗ of K∗. It will give

crucial information about the abelian variety Aσ under action σ ∈ Aut(C/K∗).
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3.3. Classification of abelian varieties with CM. Let ξ : Cg/Λ
∼−→ A be an

abelian variety with CM by a CM-field K and fix an embedding ι : K ↪→ End0(A),
through which the analytic representation (3.5) induces a faithful action

S : K ↪→Mg(C).

For a ∈ K, we may assume that S(a) = diag(φ1(a), · · · , φg(a)) up to a change of
basis. Since the action is faithful and C-linear, and dimQK = 2g, we see that Φ
defines a CM-type. We call (K,Φ) the CM-type associated to the pair (A, ι).

Let ω ∈ QΛ be nonzero. Since S(K)(ω) ⊂ QΛ and they both have dimension
2g, S(K)(ω) ∼= QΛ. Scaling the basis by ω−1 we obtain a Q-linear isomorphism
uΦ : K → QΛ where uΦ(a) is S(a) acting on the vector (1, · · · , 1) ∈ Cg. Extending
R-linearly to a map u : KR = K ⊗ R → RΛ = Cg and putting a = u−1(Λ), we
obtain a commutative diagram with exact rows:

0 a KR KR/a 0

0 Λ Cn A 0

u

ξ

.

We will also say that (A, ι) is of CM-type (K,Φ, a), where a depends on ξ. The
construction is easily generalized to the case of CM-algebras W by taking products.
We call (A, ι) principal if ι−1(End0(A)) = OW is the maximal order of W .

An isogeny µ : (A1, ι1)→ (A2, ι2) of abelian varieties with CM by a CM-algebra
W is an isogeny µ : A1 → A2 such that the diagram below commutes:

A1 A2

A1 A2

µ

µ

ι1(f) ι2(f) , for any f ∈W.

We now show that the associated CM-type (W,Φ) classifies (A, ι) up to isogeny.

Theorem 3.7. Two abelian varieties (A1, ι1) and (A2, ι2) with CM by a CM-algebra
W are isogenous if and only if they have the same associated CM-type.

Proof. If (A1, ι1) and (A2, ι2) are isogenous, then there is a linear isomorphism
µ∗ : End0(A1) → End0(A2) given by α 7→ µ ◦ α ◦ µ−1. Hence ι2 = µ∗ ◦ ι1, which
means that ι1 and ι2 induces the same diagonalization, and thus the same CM-type.

Conversely, suppose that (A1, ι1) and (A2, ι2) are of CM-types (W,Φ, a1) and
(W,Φ, a2) respectively. Since a1, a2 ∈ W are lattices, there exists some c ∈ Z such
that ca1 ⊂ a2. Thus we have the following commutative diagram:

W/a1 Cn/u(a1) A1

W/a2 Cn/u(a2) A2

u ξ1

u ξ2

µc c .

Let f ∈W and x = ξ1(y) ∈ A1. Since embedding f into End0(A1) and then acting
on x is equivalent to acting on y through the analytic representation S and then
embedding into A1 via ξ1, we have
µ ◦ ι1(f)(x) = µ ◦ ξ1(S(f)(y)), and similarly ξ2(S(f)(cy)) = ι2(f) ◦ ξ2(cy).
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Now by the commutativity of the square on the right we get µ◦ι1(f) = ι2(f)◦µ. □

Next up, we show that fixing a polarization C on (A, ι) yields a more precise CM-
type information (K,Φ, a, τ) that classifies (A, ι, C) up to isomorphism instead.

Let (A, ι) be of CM-type (K,Φ) for a CM-field K. Let E be the Riemann form
associated to a polarization C on A that satisfies

(3.8) E(S(a)x, y) = E(x, S(a)y), for x, y ∈ Cg and a ∈ K.

Note that the f : K → Q given by f(a) = E(u(a), u(1)) is Q-linear, and is de-
termined by its value on a Q-basis of K. Linearity forces the map to be a sum of
basis elements, and since the map is Gal(K/Q)-invariant, the coefficients of basis
elements in the sum has to be the same. Hence there exists some τ ∈ K such that

f(a) = TrK/Q(τa) for all a ∈ K.

But by (3.8), for any a, b ∈ K we have

E(u(a), u(b)) = E(u(a), S(b)u(1)) = E(S(b)u(a), u(1)) = E(u(ab), u(1)),

so that E(u(a), u(b)) = TrK/Q(τab). Since E is alternating,

TrK/Q(τab) = −TrK/Q(τab) = −TrK/Q(τab),

so that τ = −τ is imaginary. Hence φ(τ) = φ(τ) for any φ ∈ Φ. Moreover, since
u(K) ∼= QΛ is dense in Cg, identifying Φ t Φ with Gal(K/Q) we obtain

(3.9) E(z, w) =

g∑
j=1

φj(τ)(zjwj − zjwj) for any z, w ∈ Cg.

By the positive-definite property of E and the the fact that

E(z,
√
−1z) = −2

√
−1

g∑
j=1

φj(τ)|zj |2,

it follows that =φ(τ) > 0 for any φ ∈ Φ. Conversely, given τ ∈ K that satisfies
τ = −τ and =φ(τ) > 0 for any φ ∈ Φ, there exists an integer q > 0 such that qE is
a Riemann form that satisfies (3.8), where E is defined as in (3.9).

We say that (A, ι, C) is of CM-type (K,Φ, a, τ), where both the lattice a ⊂ K

and τ depends on a uniformization ξ : Cg/Λ
∼−→ A. Conversely, a triple (A′, ι′, C′)

can be constructed from a CM-type (K,Φ, a, τ) as follows. Using Φ, we define
S : K →Mg(C) by S(a) = diag(φ1(a), · · · , φg(a)). Let u : K → Cn be such that
u(a) is S(a) acting on the vector (1, · · · , 1) ∈ Cg. Then A′ = Cg/Λ with Λ = u(a).
The embedding ι′ : K ↪→ End0(A) is recovered from

ι′(a) ◦ ξ = ξ ◦ S(a).

Finally E defined by (3.9) is a Riemann form that determines a polarization C′ of
A′ up to some integer q > 0. It can be checked that (A′, ι′, C′) is isomorphic to
(A, ι, C). In fact, there is a one-to-one correspondence between isomorphism classes
of (A, ι, C) and equivalence classes of CM-types (K,Φ, a, τ).

Note that the construction above is easily generalized to CM-algebras: instead
of a single τ , we have a collection {τi}i, one τi for each CM-field factor Ki.
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3.4. The main theorem and the construction of class fields. We state the
main theorem of CM of abelian varieties, but we refrain from giving a proof.

Theorem 3.10 (The main theorem of CM of abelian varieties over the reflex field).
Let (A, ι, C) be a polarized abelian variety of CM-type (W,Φ, a, τ) with respect to a
uniformization ξ : Cg/u(a) ∼−→ A. Let W ∗ be the reflex field. Fix σ ∈ Aut(C/W ∗)
and choose s ∈ A×

W with [s,W ] = σ|(W∗)ab . There exists a unique uniformization

ξ′ : Cg/u(NmΦ(s)
−1a)

∼−→ Aσ

such that Aσ is of CM-type (W,Φ,NmΦ(s)
−1a,NmK/Q((s))τ) with respect to ξ′,

and we have the following diagram that commutes

W/a W/NmΦ(s)
−1a

A Aσ

ξ◦u

σ

NmΦ(s)−1

ξ′◦u .

Proof. See Shimura [11]. □

N.B. The reader is advised to compare this with the main theorem of CM of
elliptic curve Theorem 2.12. In both case, an algebraic action σ is translated, via
vertical analytic maps, to an arithmetic action of multiplication by an idèle.

Remark 3.11. In the main theorem above we restrict σ ∈ Aut(C/W ∗) over the
reflex field W ∗ instead of over Q. This is because for A and Aσ to be isogenous, σ
has to preserve CM-type (W,Φ), and W ∗ is defined precisely to make this happen.
The subsequent works of Langlands, Deligne, and Tate in the 1980s relaxed this
restriction and proved the main theorem over Q. For an account see Milne [5].

In any case, Theorem 3.10 is sufficient for constructing class fields. Consider a
system P = (A, ι, C, T ) of CM-type (W,Φ), where T is a set of torsion points of A.

Definition. A field of moduli kP ⊂ C of P is a field that satisfies the following:
(i) every field of definition k for P, that is, a field k over which A, C, ι(W ), and

T are rational, contains kP ;
(ii) for every complex embedding σ : k ↪→ C of a field of definition, σ|kP is the

identity if and only if P is isomorphic to Pσ, that is, there is an isomorphism
f : A→ Aσ of polarized abelian variety with f(T ) = T σ.

It turns out that kP is uniquely characterized by (i) and (ii).

If P is defined over a number field K, then by Galois theory kP is the field
corresponding to the subgroup of Gal(K/Q) consisting of those σ ∈ Gal(K/Q)
such that P is isomorphic to Pσ.

Theorem 3.12. Let P = (A, ι, C) be of CM-type (W,Φ) with (A, ι) principal. Then
the field of moduli kP is an unramified extension of the reflex field W ∗.

To formulate the theorem for abelian extensions, we need an analogue of Weber
function, that is, some model of A that is invariant under automorphisms. Recall
that the automorphism group Aut(A, C) is finite once a polarization C is fixed. We
call A/Aut(A, C) a Kummer variety with quotient h : A→ A/Aut(A, C).
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Theorem 3.13. Let P = (A, ι, C) be of CM-type (W,Φ). Let m = m1×· · ·×mr be a
modulus of W and m the least common multiple of m1, · · · ,mr. Then kP(h(A[m]))
is an abelian extension of W ∗ of conductor dividing m, where

A[m] = {P ∈ A : αP = 0 for all α ∈ m}

is the group of m-torsion points.

Remark 3.14. Comparing Theorem 3.12 and Theorem 3.13 to the corresponding
statements for elliptic curves, Theorem 2.7 and Theorem 2.9, we notice that we only
get some class fields, but not all of them. Hence we cannot talk about maximal
(unramified) abelian extensions as we did for elliptic curves.

4. Where to go from here

There is an abundance of related aspects of complex multiplication that are not
included here. We mention a few and give reference.

Integrality of the j-invariant. In Lemma 2.2 we proved that j(E) is algebraic
for E with CM. It turns out that j(E) is an algebraic integer. Three different proofs
of this fact of different flavors are given in Chapter II §6 of Silverman [12].

L-series and Hecke character. One can define an L-series associated to an
elliptic curve E, which encodes, among many things, the ramification behavior of
E during reduction. Recall that the Dirichlet L-function L(s, χ) which converges
for <s > 1 has an analytic continuation to the whole complex plane and satisfies a
functional equation. It remains a conjecture whether the L-series L(s,E) associated
to an elliptic curve E satisfy the same properties, namely, that it can be extended
to the C and satisfies a functional equation of the form

L(E/L, 2) = L(E/L, 2− s).

If E has CM, then this conjecture is verified. One can also define Hecke characters
and Hecke L-series associated to an elliptic curve. See Chapter II §9, 10 of [12].

Iwasawa theory for elliptic curves. In the classical Iwasawa theory we
consider the infinite cyclotomic tower over Q obtained by repetitively adjoining pth

root of unity and study the p-adic analogue of Riemann zeta function.

Q(ζp∞) K(Ep∞)

Q(ζp) K(Ep)

Q K

Zp

(Zp)
×

Zp

(Zp)
×

(Z/pZ)× (Z/pZ)×

,

Substituting Q for K, an imaginary quadratic field, the role of ζpn is played by
the pn-torsion points of E. We thus have an analogous infinite tower, the one on
the right. The p-adic L-series L(E, s) tells us about the p-part of Tate-Shafarevich
group, which is helpful to understanding the conjecture of Birch and Swinnerton-
Dyer. Skinner [9] has a nice exposition of this topic.
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CM lifting problems. If A is an isotypic abelian variety defined over a finite
field Fp, then we may endow a CM structure on A with CM by a CM-field. We ask:
under what conditions does A lift to an abelian scheme A′ defined over a domain R
of characteristic zero, such that R→ Fp is surjective and A′ is isomorphic/isogenous
to A over Fp? For details we refer the reader to Conrad-Chai-Oort [1].

Modular forms and Galois representations. One can extend the notion
of CM to the study of modular forms. Let f be a Hecke eigenform on Γ1(N) and
denote by an the n-th coefficient of its Fourier expansion. Let ϕ be a nontrivial
Dirichlet character mod N . We say that f has CM by ϕ if ϕ(p)ap = ap for almost
all primes p. Hecke and Shimura explicitly constructed newforms with CM.

Let K be the field generated by eigenvalues of f corresponding to the Hecke
operators 〈d〉 and Tn. Let L the largest totally real subfield of K. Then it is not
hard to prove that either K = L, or that K/L is a CM-field.

The theory of CM of eigenforms comes up in the study of `-adic Galois repre-
sentations attached to an eigenform. For many reasons, it is crucial to decipher the
image of such a representation. It turns out, very roughly speaking, that f has CM
if and only if the image of the associated Galois representation is abelian. Ribet [8]
contains detail of the above discussions.

Elliptic-curve cryptography (ECC). Elliptic curves with CM also has fruit-
ful applications to cryptography. The analytic action a ∗ E we studied in Section
2.1 can be usefully implemented as an encryption method. The theory of CM is
also used to algorithmically generate an elliptic curve with prescribed number of
points. This is called the CM method. The literature is vast.
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