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1 Rings and Modules

1.1 Basic Notions

Theorem 1.1 (Chinese remainder theorem). Let R be a ring and I1, · · · , In ideals of R. There
is an injective canonical map φ : A/(I1 ∩ · · · ∩ In) → A/I1 × · · · × In. If I1, · · · , In are mutually
coprime (Ij + Ik = R for all j ̸= k), then I1 ∩ · · · ∩ In = I1 · · · In and φ is an isomorphism.

Theorem 1.2 (Prime avoidance). f

The nilradical nil(R) of a ring R is the radical of zero ideal. It is the set of all nilpotent elements
of R. Alternatively, it is the intersection of prime ideals of R.

A ring R is reduced if nil(R) = 0. Every ring R can be thought of as the ring of a certain kind
of functions over Spec(R) taking values in κ(p) = Fr(R/p) for p ∈ Spec(R). For every a ∈ R, let
a : Spec(R) → κ(p) be the function such that a(p) is the class of a modulo p. Hence we have a
ring homomorphism R →

∏
p∈Spec(R) κ(p) which has kernel nil(R). When R is reduced, this map

is injective, and R embeds into the space of all theoretical functions.

The Jacobson radical rad(R) of a ring R is the intersection of all maximal ideals of R. An element
a ∈ rad(R) if and only if 1 + aR ⊂ R×.

1.2 Tensor Product and Localization

The most important thing about tensor product −⊗R N is its right-exactness:

Proposition 1.3. Let R be a ring and N an R-module. Let f : M → M ′ be a surjective linear
map between R-modules. Then the induced map f ⊗R idN :M ⊗RN →M ′⊗RN is also surjective.

However, − ⊗R N is not in general left-exact. For instance, consider R = M = M ′ = Z with an
injective map ×p : Z→ Z. Let N = Z/pZ. Then the induced map Z/pZ→ Z/pZ is the zero map,
which is not injective. The reason for this discrepancy is that elements of M ⊗R N are finite sums
m1 ⊗ n1 + · · ·+mk ⊗ nk, instead of “pure tensors” m⊗ n.

An important case of tensor product is the change of scalars: if R′ is an R-algebra, then for an
R-module M , M ⊗R R

′ has an R′-module structure.

Another important case of tensor product is localization.

Proposition 1.4. Let R be a ring, M an R-module, and S a multiplicative closed set. Then
M [S−1] ∼=M ⊗R R[S

−1] as R[S−1]-modules.

Proof. See [Mat] Theorem 4.4.

In the case of localization, tensor product ⊗RR[S
−1] is left-exact. This is because elements of

M ⊗R R[S
−1] are “pure tensors”:

m1 ⊗
a1
b1

+m2 ⊗
a2
b2

= b2m1a1 ⊗
1

b1b2
+ b1m2a2 ⊗

1

b1b2
= (a1m1b2 + a2m1b1)⊗

1

b1b2
.

In that case, injectivity is easily verified. In fact, localization is an exact functor.
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Now let us consider the special case of localization R[S−1] of rings. There is an easy but important
structural correspondence of ideals:

{ideals I of R} ←→ {ideals IR[S−1] of R[S−1]};

{prime ideals p of R disjoint from S} ←→ {ideals pR[S−1] of R[S−1]}.

In particular, prime ideals of Rp are prime ideals of R contained in p. For the opposite direction,
prime ideals of R/p are prime ideals of R containing p.

Localization commutes with passing to quotient: R[S−1]/IR[S−1] ∼= (R/I)[S̄−1] where S̄ is the
image of S in R/I. This is easily deduced from the uniqueness of universal property.
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2 Zariski Topology

Let R be a ring. For an ideal I of R, let V (I) = {p ∈ Spec(R) : p ⊃ I}. Then

(i) V (I) ∪ V (I ′) = V (II ′) = V (I ∩ I ′) for I and I ′ ideals of R;

(ii)
⋂

λ V (Iλ) = V (
∑

λ Iλ) for any family of ideals {Iλ}λ∈Λ of R.

Let V (I) be the closed sets. It defines a topology on Spec(R) called the Zariski topology. Open
sets are of the form UI = Spec(R) \ V (I) = {p ∈ Spec(R) : p ̸⊃ I} =

⋃
a∈I Ua where Ua = U(a).

Sets of the form Ua are called principal open sets. They form a basis of the Zariski topology.
Also note that V (I) = V (

√
I), and that V (I) = V (J) if and only if

√
I =
√
J .

Recall that a topological space is quasi-compact if every open has a finite subcover. It is compact
if it is quasi-compact and Hausdorff.

Proposition 2.1. Principal open sets are quasi-compact. In particular, Spec(R) is quasi-compact.

However, Spec(R) is not compact in general for it fails to be Hausdorff: if R is a domain, then (0)
is a prime ideal that belongs to every nonempty open subset of Spec(R).

Let φ : A→ B be a ring homomorphism. There is an induced map Spec(φ) : Spec(B)→ Spec(A)
by q 7→ φ−1(q) on the prime spectra that is continuous since Spec(φ)−1(V (I)) = V ((φ(I))).

Proposition 2.2. The fiber Spec(φ)−1(p) of Spec(φ) over p ∈ Spec(A) is Spec(B ⊗A κ(p)).

Proof. Define ψ : B → B⊗A κ(p) by b 7→ b⊗1. Then since κ(p) = Ap/pAp = (A/p)⊗AAp, we have

B ⊗A κ(p) = B ⊗A (A/p)⊗A Ap = (B/pB)⊗A Ap = (B/pB)pB.

Hence the image of Spec(ψ) consists of those q ∈ Spec(B) such that q ⊃ pB and q ⊂ pB. Hence
Spec(B ⊗A κ(p)) = Spec(ψ) = φ(p) = Spec(φ)−1(p).

2.1 Linear maps and Nakayama’s lemma

Theorem 2.3 (Nakayama’s lemma). Let M be a finitely generate R-module. Let m be an ideal of
R contained in the Jacobson radical rad(R). If mM =M , then M = 0.

Proof. Suppose M is generated by {a1, · · · , an} where n ≥ 1 is chosen to be minimal. Since
mM = M , put a1 =

∑n
i=1miai where mi ∈ m, so that (1 − m1)a1 =

∑n
i=2miai. But (1 − m1)

is a unit, since m ∈ rad(R). Hence a1 is a linear combination of {a2, · · · , an}, contradicting the
minimality assumption.

We give some applications of Nakayama’s lemma.

Corollary 2.4. Let M be a finitely generated R-module. If φ : M → M is a surjective R-linear
map, then φ is bijective.

Proof. d

Corollary 2.5. Let (R,m) be a local ring and M a finitely generated R-module. If N ⊂ M is a
submodule with N +mM =M , then N =M .

Corollary 2.6. Let (R,m) be a local ring. LetM be a finitely generated R-module. If {m1, · · · ,mn}
generates M/mM , then it generates M .
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Proof. d

Remark. Cor. is not true if the finiteness condition is dropped. Indeed, if R = Z(2) and M = Q,
then M/(2)M = 0.

Corollary 2.7. If ring S is integral over ring A, then Spec(S)→ Spec(R) is onto.
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3 Noetherian and Artinian rings

Simple module. An ideal I is maximal if and only if R/I is a simple R-module. All simple modules
are of this form.

length
Artinian but not Noetherian https://planetmath.org/exampleofanartinianmodulewhichisnotnoetherian

Proposition 3.1. Let A be a Noetherian domain with K = Fr(A). Let L/K be a finite separable
extension and B the integral closure of A in L. Then B is a finitely generated A-module, and in
particular, B is Noetherian.

Proof. https://math.stackexchange.com/questions/50332/the-integral-closure-of-a-finite-separable-
field-extension-of-the-fraction-field

Noetherian ring can have infinite Krull dimension! Nagata
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4 Associated Primes and Primary Decomposition

4.1 Associated Primes

Let R be a ring and M an R-module. A prime ideal p of R is an associated prime ideal of M
if R/p ⊂M is a submodule, or equivalently, if p is the annihilator AnnR(x) of some x ∈M . Write
AssR(M) for the set of associated primes of M . For M = R, associated primes are just prime
ideals.

Proposition 4.1. Let R be a Noetherian ring and M ̸= 0 an R-module. Then

(i) if I ∈ Div(M) = {AnnR(x) : 0 ̸= x ∈M} is maximal, then I ∈ Ass(M);

(ii) Ass(M) is nonempty;

(iii) the set of zero-divisors of M is the union of its associated primes

Proposition 4.2. Let R be a ring and S ⊂ R a multiplicative subset. Let M be an R-module and
N an R[S−1]-module. Then

(i) there is a bijection between AssR(N) and AssR[S−1](N);

(ii) if R is Noetherian, then there is a bijection between Ass(M [S−1]) and Ass(M)∩Spec(A[S−1]).

Proposition 4.3. Let R be a ring and 0 −→ M ′ −→ M −→ M ′′ −→ 0 an exact sequence of
R-modules. Then Ass(M ′) ⊂ Ass(M) ⊂ Ass(M ′) ∪Ass(M ′′).

Proposition 4.4. Let R be a Noetherian ring and M ̸= 0 a finitely generated R-module. Then
there exists a filtration 0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M of R-submodules such that Mi/Mi−1

∼= R/pi
for pi ∈ Spec(R) for each i.

Proposition 4.5. Let R be a Noetherian ring and M a finitely generated R-module. Then

1. Ass(M) is a finite set;

2. Ass(M) ⊂ Supp(M) = {p ∈ Spec(R) :Mp ̸= 0};

3. the set of minimal elements of Ass(M) and Supp(M) coincide.

Minimal elements pi of Ass(M) are called isolated primes of M , and the remaining ones are
called embedded primes of M . Geometrically, closed set Supp(M) is the union of irreducible
components V (pi). For instance, consider the ring R = k[x, y, z] where k is a field, with its
prime ideals p = (x, y), q = (x, z), and m = (x, y, z). For ideal I = pq = p ∩ q ∩ m2, p and q
are isolated primes of A/I (minimal prime ideals containing I), while m2 is an embedded prime.
Geometrically, p and q are isolated components z-axis and y-axis respectively, while m2 is the
first-order neighborhood at the origin, embedded inside p and q. As we shall see, the existence of
embedded primes prevents primary decomposition to be unique.

Proposition 4.6. If R is a reduced ring, then R does not have embedded primes.
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4.2 Primary Decomposition

Let R be a ring and M an R-module. A submodule N ⊂ M is primary if for any zero divisor
a ∈ R of M/N , a ∈

√
Ann(M/N). Taking M = R, primary submodules are just primary ideals.

Proposition 4.7. Let R be a Noetherian ring and M a finitely generated R-module. Then a
submodule N ⊂M is primary if and only if Ass(M/N) = {p} with p =

√
Ann(M/N).

Therefore, we say N is p-primary or M/N is p-coprimary if Ass(M/N) = {p}.

Proposition 4.8. If N and N ′ are p-primary submodules of M , then so is N ∩N ′.

Irreducible modules

Theorem 4.9. Let R be a Noetherian ring and M a finitely generated R-module. Then

(i) every proper submodule N ⊂M has a primary decomposition N = N1 ∩ · · · ∩Nr;

(ii) if the decomposition is irredundant, then Ass(M) = {p1 · · · , pr} where Ass(M/Ni) = {pi};

(iii) if pi ∈ Ass(M) is minimal, then the p-primary component Ni = ker(M →Mpi).

Remark. Spec perspective

Non-uniqueness of embedded primes

4.3 Factorization

Let R be a ring. An element a ∈ R is irreducible if a = bc implies that either b or c is invertible.
An element a ∈ R is prime if the principal ideal (a) is a prime ideal. In general prime elements
are irreducible, but the converse is false: in R = Q + xR[x] the element x is irreducible but not
prime, since

√
2x ·
√
2x = 2x2 ∈ (x) but

√
2x ̸∈ (x).

A domain R is a Unique Factorization Domain (UFD) if every element a ∈ R can be factored
into a product of prime elements that is unique up to multiplication by a unit.

Proposition 4.10. If R is a UFD, then R[x1, · · · , xn] is a UFD.

If R is a Noetherian ring, then every element can be factored into irreducible elements. But R
does not always admit a prime factorization: in k[X,Y ] the ideal (X2, Y 2) cannot be factored into
primes. There is a primary decomposition, but it is not always unique: (x2, xy) = (x) ∩ (x2, y) =
(x) ∩ (x2, xy, y2). When does R admit a unique prime factorization?

Proposition 4.11. Let R be a Noetherian domain. If a ∈ R admits a prime factorization a =
u
∏n

i=1 p
mi
i with u ∈ R×, then Ass(R/(a)) = {(pi) : 1 ≤ i ≤ n} and mi are the greatest integers for

which a ∈ (pmi
i ). Moreover, the factorization is unique, and (a) =

⋂n
i=1(p

mi
i ) is a minimal primary

decomposition of (a).

Proposition 4.12. A Noetherian domain is a UFD if and only if every prime ideal which is
minimal among those containing a principal ideal is principal.

4.4 Symbolic powers

Symbolic powers can be used to prove the following important theorem.

Theorem 4.13 (Krull’s principal ideal theorem). fff

Another less tricky and more intrinsic proof is given in Corollary 8.3.

8



5 Discrete Valuation Rings and Dedekind Domains

5.1 Discrete Valuation Ring

For a field K, a discrete valuation on K is a surjective group homomorphism v : K× → Z that
satisfies v(x+ y) ≥ min{v(x), v(y)}. An integral domain R is a discrete valuation ring if there
exists a discrete valuation on K = Fr(R) and R = {x ∈ K : v(x) ≥ 0}.

Ideals I of a discrete valuation ring R are of the form I = {x ∈ k : v(x) ≥ n} for some n ≥ 0.
It follows that R is local with maximal ideal m = {x ∈ K : v(x) > 0}. Every ideal is generated
by a single element of minimal valuation, so R is a principal ideal domain and in particular R is
Noetherian. The generator of m is called the uniformizer, and it is unique up to units.

Common examples of discrete valuation rings include Z(p) and K[[X]] with K being a field. For

Z(p), the valuation v on Q = Fr(Z(p)) is given by v(r) = k for r = pk(z/n) the unique factorization
in Q. The uniformizer is p. For K[[X]], the valuation v on Fr(K[[X]]) = K((X)) assigns each
formal Laurent series to the degree of its first nonzero term. The uniformizer is X.

Proposition 5.1. A Noetherian local domain with maximal ideal principal is a DVR.

Proof. Let (R,m) be a Noetherian local domain with m = (t). We will prove the decomposition
R \ {0} =

∐
n≥0R

×tn. Given this, the valuation v(atk) = k ∈ Z on K× = Fr(R) =
∐

n∈ZR
×tn

admits R as a discrete valuation ring.

Since R is Noetherian, by Krull’s intersection theorem ∩n≥0m
n = 0. It suffices to prove that

mn \ mn+1 = A×tn for any n, that is, any x ∈ mn \ mn+1 can be written uniquely as x = utn for
u ∈ R×. Since tn generates mn, x = rtn for r ∈ R, and uniquely so, since R is a domain. Since
x ̸∈ mn+1, r ̸∈ m. Since R is local, r ∈ A×.

A discrete valuation ring R is integrally closed, that is, there is no finitely generated R-algebra
contained in K = Fr(R) but R itself. Indeed, if A ̸= R is a finitely generated R-algebra contained
in K, then the valuation restricted to A is bounded from below; yet for a ∈ A \ R with v(a) < 0,
v(an) = nv(a) is not bounded from below.

Proposition 5.2. An integrally closed Noetherian domain with exactly two prime ideals is a DVR.

Proof. Let (R,m) be an integrally closed local Noetherian domain such that there exists a ∈ m
such that m ∈ Ass(R/(a)). We will show that R is a discrete valuation ring. By Proposition 5.1 it
suffices to show that m is principal.

Let K = Fr(R) and Let A = {x ∈ K : xm ⊂ R} be an R-submodule of K containing R. We
will show that m ⫋ mA. Given this, since R is local, there exists x ∈ A and y ∈ m such that
xy ∈ R×. Replacing x up to some unit, we may assume that xy = 1. Then for any z ∈ m,
z = z(xy) = (zx)y ∈ Ry, which implies that m = (y).

Assume for contradiction that mA ⊂ m. Since R is Noetherian, m is finitely generated. Since
A ⊂ x−1R for any x ∈ m, A is finitely generated over R. But since R is integrally closed, A = R.
Since m ∈ Ass(R/(a)), there exists b ∈ R/(a) such that mb ⊂ (a), which implies that m(b/a) ⊂ R.
Then b/a ∈ A \R, contradicting A = R. Hence m ⫋ mA.

If R is an integrally closed Noetherian domain with exactly two prime ideals 0 and m, then R
is local, and for any a ∈ m, since R/(a) ̸= 0, Ass(R/(a)) ̸= ∅. Since 0 ̸∈ Ass(R/(a)), the only
possibility is that m ∈ Ass(R/(a)). Hence by previous analysis R is a discrete valuation ring.
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5.2 Complete Discrete Valuation Ring

Proposition 5.3. A local Noetherian domain (R,m) is a DVR if and only if R̂m is a DVR.

A complete discrete valuation ring (R,m) is a discrete valuation ring that is complete with respect
to m-adic topology.

Proposition 5.4. Let (R,m, k) be a complete DVR. Then for every prime element p ∈ R there is
an isomorphism k[[t]]→ R of k-algebras given by t 7→ p.

Lemma 5.5. Let (R,m) be a local ring and M a finitely generated R-module. Then there is a
bijection between SpecMax(M) and prime ideals of R/mB = B ⊗A A/m.

Proof. We first show that every maximal ideal in B contains mB. Suppose n ∈ SpecMax(B) is
otherwise. Then by Nakayama’s lemma n+mB =

Theorem 5.6. Let (A,m) be a complete DVR and K = Fr(A). Let L/K be a finite separable
extension. Let B be the integral closure of A in L. Then B is a complete DVR.

Proof. We will show that B is an integrally closed Noetherian domain with two prime ideals. By
Proposition 3.4, B is Noetherian. Since B⊗AK is a field, the fiber of (0) ∈ Spec(A) is (0) ∈ Spec(B),
which implies that B is a domain. It remains to show that B is local, that is, B = B/mB has only
one prime ideal. Since B is Artinian, being finite over a field A/m, it suffices to show that B is
local. To do that, we show that B does not have proper idempotent.

Being a finitely generated module over an m-adically complete Noetherian ring A, B is also m-
adically complete. Lifting idempotents, we get Idem(B) = Idem(B/mB). Since B is a domain, it
has no proper idempotents, so neither does B/mB.

Remark. If R is not complete, then Theorem 5.5 fails to be true. Indeed, consider

Z(p) Q

Q(p) Q[i]

.

The integral closure Q(p) of Z(p) in Q[i] fails to be local, as (p) is not prime in Q.

Proposition 5.7. All finite extensions of the field of Laurent formal series C((X)) are of the form
C((X1/n)), the field of Puiseux series.

Then there is a canonical isomorphism A/mn → Â/m̂n. Indeed, since mn = A ∩ m̂n, it is an
injection; since A is dense in Â and m̂n is an open set in the m-adic topology, (x+ m̂n)∩A ̸= ∅ for
any x ∈ A, and thus it is a surjection.

Lemma 5.8. Let R be a DVR and A a complete R-algebra. If e is an idempotent element in A/πA,
(π being the uniformizer of R) then there exists idempotent elements E in A such that e = E+πA.

Proof. Idempotent lifting lemma. Completion preserves Noetherian, completion of a pid is a do-
main. We show that B is local. Then since it is a Dedekind ring, it is a DVR (all nonzero primes
are maximal, but only one maximal ideal, so only two ideals)

Suppose B has A-basis x1, · · · , xm. Let {an} be a Cauchy sequence in B, with an = an,1x1 + · · ·+
an,mxm with an,i ∈ A. Then since limn→∞{an,i} exists in A for each i, {an} has a limit in B,
proving that B is complete.
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Let m be the maximal ideal of of A. Then mB has factorization pk11 · · · p
kg
g . By Chinese Remainder

Theorem B/mB ∼= B/pk11 ⊕ · · · ⊕ B/p
kg
g . If g > 1 then there is a nontrivial idempotent element

e = (1, 0, · · · , 0) in B/pk11 that lifts to an idempotent E in B. But B is a domain, so E has to be
trivial, rendering e = E+pk11 = pk11 , which is absurd. Hence g = 1, that is, B has only one maximal
ideal. Now completion of a Noetherian PID is a Noetherian domain, so B is a Dedekind ring. All
nonzero primes of a Dedekind ring are maximal, but here since B is local, it has only one nonzero
prime ideal. Hence B is a DVR.

5.3 Dedekind Domain

A Noetherian domain R is a Dedekind domain if Rp is a DVR for every prime ideal p of R. It
follows that every nonzero prime ideal of R is maximal. Indeed if 0 ⊂ q ⊂ q, then then Rp has
three prime ideals.

11



6 Integrality

Proposition 6.1. Let R be a ring and I an ideal of R[x]. The M = R[x]/I is finitely generated
as R-module if and only if I contains a monic polynomial. If I is generated by a monic polynomial
of degree d, then M is free of rank d.

Proposition 6.2. integral extension iff finitely generated module

6.1 Cohen-Seidenberg Theory

Cohen-Seidenberg theory, or going-up and going-down theorems, informs the correspondence of
prime ideals between integral extension of domains.

Theorem 6.3. Let φ : A→ B be a ring homomorphism between integral domains A and B where
B is a finitely generated A-module. Then

(i) the induced map Spec(φ) : Spec(B)→ Spec(A) is surjective with finite fibers;

(ii) if I is an ideal of B such that I ∩A = 0, then I = 0;

(iii) L = Fr(B) is a finite extension of K = Fr(A).

Proof. (i) A prime p ∈ Spec(A) is in the image of Spec(φ) if and only if it is in the support Supp(B)
of B, which is a closed subset of Spec(A). Since A and B are integral domains, their zero ideals
are prime, and the zero ideal of A is the image of the zero ideal of B. The Zariski closure of the
zero ideal in Spec(A) is the whole Spec(A). Hence Spec(φ) is surjective.

d

Theorem 6.4 (Going-up). Let A → B be an integral extension of rings. Let p1 ⊂ p2 be prime
ideals of A. If q1 ∈ Spec(B) lies over p1, then there exists q2 ∈ Spec(B) lying over p2.

Theorem 6.5 (Going-down). Let A → B be an integral extension of domains. Let p1 ⊂ p2 be
prime ideals of A. If q2 ∈ Spec(B) lies over p2, then there exists q1 ∈ Spec(B) lying over p1.

6.2 Jacobson Rings and Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz states that for an algebraically closed field k, if I is and ideal of R =
k[x1, · · · , xn] and f ∈ R vanishes on the common set of zeros of polynomials of I, then f ∈

√
I. It

can be proven ....

Proof. We first state and prove the weak Nullstellensatz :

A family of polynomials of A with no common zeros generates the unit ideal of A.

Proof of the weak Nullstellensatz : Let m be a maximal ideal of A. Then there is a natural map
φ : A → A/m ∼= k by xi 7→ ai. Evidently n = (x1 − a1, · · · , xn − an) ⊂ kerφ = m, so there is a
surjective map φ̃ : A/n → k. Let ψ̃ : A → A/n be the natural map, then ψ̃(xi) = ψ̃(ai). Hence
ψ̃(f(x1, · · · , xn)) = ψ̃(f(a1, · · · , an)), so elements of A/a are of the form ψ̃(n) for a ∈ k. But
φ̃(ψ̃(a)) = φ(a) = a, so in particular φ̃(ψ̃(r)) = 0 if and only if r = 0. Hence ker φ̃ consists of
only ψ̃(0) = 0, implying that φ̃ is injective. Hence m = n, that is, every maximal ideal of A is of
the form (x1 − a1, · · · , xn − an). Now if a family of polynomials of A lies in some maximal ideal
(x1− a1, · · · , xn− an), then (a1, · · · , an) is a common zero. Hence a family of polynomials with no
common zeros doesn’t lie in any maximal ideal, and thus generates the unit ideal of A.
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We use the Rabinowitsch trick to prove Hilbert’s Nullstellensatz. Since A = k[x1, · · · , xn] is Noethe-
rian, let a = (f1, · · · , fm). If f ∈ A vanishes on Z(a), then f1, · · · , fm, x0f+1 doe snot have common
zeros in A[x0]. By the weak Nullstellensatz, there exists g0, · · · , gm ∈ A[x0] such that

1 = g0 · (x0f + 1) + g1f1 + · · ·+ gmfm

as elements in A[x0]. Now substitute x0 = 1/f to get

1 = g1(1/f, x1, · · · , xm)f1 + · · ·+ gm(1/f, x1, · · · , xm)fm

as elements in Fr(A). Multiply both sides by some power of f , we get f r = h1f1 + · · ·+ hmfm for
hm ∈ A. Hence f ∈ a.

Somewhat deeper, Hilbert’s Nullstellensatz is a consequence of the structure of Jacobson rings.
This way k need to be a field.

A ring R is a Jacobson ring if every prime ideal p of R is the intersection of maximal ideals
containing p.

Lemma 6.6. A ring R is a Jacobson ring if and only if the map Spec(R[s−1]) → Spec(R) sends
maximal ideals to maximal ideals for any s ∈ R.
Proof. d

Lemma 6.7. Let A be a domain. If K = Fr(A) is a finitely generated A-module, then A = k.

Proof. If there exists x ∈ A with 1/x ∈ K −A. Since K is a finitely generated A-module

Theorem 6.8. If R is a Jacobson ring and S a finitely generated R-algebra, then S is a Jacobson
ring. Moreover, if q is a maximal ideal of S, then q∩R is a maximal ideal of R, and S/q is a finite
extension of R/p.

Proof. If S = R[x1, · · · , xn]/I satisfies the theorem, then so do all its quotient rings. Hence by
induction it suffices to assume that S = R[x1, · · · , xn]. Similarly, it also suffices to assume that
S = R[x]. Assuming that S is a Jacobson ring, we first proof that the map Spec(S) → Spec(R)
sends maximal ideals to maximal ideals and induces finite extensions of corresponding residue fields.

Let q be a maximal ideal of R[x] and p = q∩R. By taking R/p instead of R, we may assume that
R is a Jacobson domain and p = 0. It suffices to show that R is a field, so that p is maximal. Since
R[x] is not a field, q is nonzero. Let f = anx

n+ · · ·+a0 ∈ R[x] be nonzero with an ∈ R\{0}. Since
q∩R = 0 in R, an ̸∈ q. Inverting an and setting R′ = R[a−1

n ], f is monic in R′[x]. Hence R′[x]/(f) is
a finitely generated R′-module. Since an ̸∈ q, q[a−1

n ] is a maximal ideal of R′[x]. Since R′[x]/q[a−1
n ]

is a quotient of R′[x]/(f), the former, which is a field, is also a finitely generated R′-module. Hence
R′ is a field. Since R is a Jacobson ring, the image of maximal ideal 0 in R, which is 0, is maximal.
Hence R is a field. Since R = R′, R[x]/q is a finite field extension of R.

Now we proof that S = R[x] is a Jacobson ring.

Remark. Let k be algebraically closed and R = k[x1, · · · , xn]/I where I is an ideal. Since
k[x1, · · · , xn] is Noetherian, I is generated by finitely many polynomials p1, · · · , pm. Let m be
a maximal ideal of R. Consider the map φ : R → R/m = k by xi 7→ αi. If α = (α1, · · · , αn) ∈ k
is the common zero for all pi, then α ∈ m. Hence m consists of the common zeros of polynomials
that generate I.

If k is not algebraically closed, then apply Nullstellensatz to R ⊗k k. Maximal ideals of R are
Gal(k/k)-orbits of common zeros of polynomials generating I. Then R/m is a finite separable
extension of k if and only if degk(R/m) is the number of points in the corresponding orbit of m.
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6.3 Noether Normalization

Now let’s restrict the base ring R to be a field k. We have the following result.

Theorem 6.9 (Noether normalization lemma). If R is a finitely generated k-algebra, then there
exists algebraically independent elements x1, · · · , xd ∈ R such that R is a finitely generated module
over S = k[x1, · · · , xn] ⊂ R.
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7 Completion

7.1 Idempotent Lifting

Let R be a ring. An element e ∈ R is an idempotent if it satisfies e(1 − e) = 0. Write Idem(R)
for the set of idempotents of R.

Proposition 7.1. Let R be a ring with nilpotent ideal I. For every idempotent ē ∈ Idem(R/I),
there exists a lift e ∈ Idem(R).

Proposition 7.2. Let R be a ring. There is a bijection between Idem(R) and subsets of Spec(R)
that are open and closed given by e 7→ V (e).

Corollary 7.3. Let R be a ring with nilpotent ideal I. Then Idem(R)→ Idem(R/I) is bijective.

Lemma 7.4. Let R be a ring with nilpotent ideal I. Then a ∈ R× if and only if ā ∈ (R/I)×, where
ā is the image of a in R/I.

Proposition 7.5. If R = R̂I , then Idem(R/I) = Idem(R).

Proof. We will show that Idem(R/I) = Idem(R/I2) = · · · . Since R/In+1 = (R/In)/(In/In+1), by
idempotent lifting lemma it suffices to show that In/In+1 nilpotent. Indeed, any a+In+1 is a finite
sum of n+ 1 elements from I, so that a2 ∈ In.

Theorem 7.6 (Hensel’s lemma). Let R be a Noetherian ring with ideal I. A solution a ∈ R/I of
the equation f(X) ∈ R[X] satisfying f ′(a) ∈ (R/I)× lifts uniquely to a solution of f(X) in R̂I .

Proof. Cring

7.2 Exactness

While Localization is exact, completion is not exact in general. For instance, consider R = k[t],
M ′ = M = ⊕n∈NR, and M

′′ = ⊕n∈NR/(t
n). The map M ′ → M is given by multiplication by tn

on the n-th summand. Then the short exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

is no longer exact at M∧ after completion with respect to (t). Indeed, ξ = (t2, t3, · · · ) is in the
kernel of M∧ → (M ′′)∧, yet ξ is not in the image of (M ′)∧ → M∧, for it would be the image of
(t, t, · · · ) ̸∈ (M ′)∧.

However, completion is naturally right-exact, and with the extra Noetherian condition it is also
left-exact. (?)

Lemma 7.7. Let R be a ring with ideal I. Then ÎI ⊂ rad(R̂I).

Proof. As ÎI = lim←−n
I/In and R̂I = lim←−n

R/In, it suffices to check that 1 + I/In ⊂ (R/In)× for

each n. Indeed, for a ∈ I, there exists (1− a+ a2 − · · · ± an−1

Theorem 7.8. Let R be a Noetherian ring with with ideal I. LetM be a finitely generated R-module
with submodule N . We have a short exact sequence of R̂-modules

0 −→ N̂I −→ M̂I −→ ˆ(M/N)I −→ 0.

Proof. Let M/N = P . For right-exactness, we show that M̂ → P̂ is surjective. Since M and P are
finitely generated and Î ∈ rad(R), by a consequence of Nakayama’s lemma of lifting generators, it
suffices to show that M̂/ÎM̂ → P̂ /ÎP̂ is surjective. Observe that P̂ /ÎP̂ = ()/I(). Hence everything
follows from the surjectivity of M → P .
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For left-exactness, we show that N̂ → M̂ as a consequence of the Artin-Rees lemma.
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8 Hilbert-Samuel function

8.1 Dimension

Let R be a ring. The (Krull) dimension dim(R) of R is the supremum of r for which there is
a strict descending chain p0 ⊃ p1 ⊃ · · · ⊃ pr of prime ideals of R. This notion of dimension is
rather abstract. We associate two numerical invariants of R equal to dim(R) when R is a semilocal
Noetherian ring. One is better for computation while the other has good geometric intuition.

Let (R,m) be a semilocal Noetherian ring and M a finitely generated R-module.

(i) Let δ(M) be the smallest number r for which there exists x1, · · · , xr ∈ m generating an ideal I
of R satisfying ℓ(M/IM) <∞. Geometrically this is the smallest number of equation needed
so that the intersection M/IM is of dimension zero.

(ii) Let d(M) = deg σIM (n) be the degree of the Samuel function of M with I a definition ideal
when n is large. This value does not depend of the choice of I. Note that the Samuel function
of a module can be explicitly calculated.

Lemma 8.1. Let R be a semilocal Noetherian ring. Let

0 −→M ′ −→M −→M ′′ −→ 0

be a short exact sequence of finitely generated R-modules. Then d(M) = max{d(M ′), d(M ′′)}.

Theorem 8.2 (fundamental theorem of dimension theory). Let R be a semilocal Noetherian ring
and M a finitely generated R-module. Then dim(R) = d(M) = δ(M).

Proof. We prove d(M) ≥ dim(M), δ(M) ≥ d(M), and dim(M) ≥ δ(M) consecutively.

For d(M) ≥ dim(M). Suppose M = A, we proceed by induction on d(R). Let m = rad(R). If
d(R) = 0, then σR(n) = l(R/mn) is constant for large n, in which case mn = mn+1. By Nakayama’s
lemma mn = 0, which implies that m ⊂ nil(R), so that any prime ideal of R is maximal. It follows
that dim(R) = 0. Now let d(R) > 0. If dim(R) = 0 then we are done; so suppose dim(R) > 0. Let
p0 ⊊ p1 ⊊ · · · ⊊ pk be a chain of prime ideals of R. Choosing x ∈ p1 \ p0, we obtain a short exact
sequence

0 −→ R/p0
x−→ R/p0 −→ S = R/(p0 + xR) −→ 0,

from which d(S) < d(R) by Lemma 8.11. By inductive hypothesis dim(S) ≤ d(S) ≤ d(R) − 1.
Since p1 ⊊ · · · ⊊ pk provides a chain of prime ideals of S, k − 1 ≤ dim(S). Hence k ≤ d(R). Since
this holds for any chain of prime ideals of R, dim(R) ≤ d(R).

Now for general M , by Proposition 4.9 there is a chain 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mq = M of
submodules of M such that Mi/Mi−1

∼= R/pi for pi ∈ Spec(R) for all i. From the short exact
sequence of the form

0 −→Mi−1 −→Mi −→M/Mi−1 −→ 0,

we have d(M) = maxi d(R/pi) and Supp(M) =
⋃

i Supp(R/pi). But

dim(M) = sup{coht(p) : p ∈ Supp(M) = Supp(R/pi)} = max
i

dim(R/pi).

It follows that dim(M) ≤ d(M).
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For δ(M) ≥ d(M). If δ(M) = 0, then l(M) < ∞, that is, σM (n) < ∞ for any n. Hence
d(M) = 0. Now let δ(M) = s > 0. Choose x1, · · · , xs ∈ m such that l(M/(x1, · · · , xs)M) < ∞.
Let Mi =M/(x1, · · · , xi)M , so that δ(Mi) = δ(M)− i. Then

l(M1/m
nM1) = l(M/(x1M +mnM))

= l(M/mnM)− l(x1M/(x1M ∩mnM))

= l(M/mnM)− l(M/(mnM : x1)) ≥ l(M/mnM)− l(M/mn−1M).

The second equality comes from a short exact sequence; the third equality can be checked manually:
the map M → x1M/(x1M ∩ mnM) by x 7→ x1x + (x1M ∩ mnM) has kernel (mnM : x1); the last
inequality comes from mn−1M ⊂ (mnM : x1). Hence σM1(n) ≥ σM (n) − σM (n − 1). When n is
large, both σM (n) and σM (n − 1) has same degree d(M), so d(M1) ≥ d(M) − 1. Repeating this,
we have d(Ms) ≥ d(M)− s. But δ(Ms) = 0, so d(Ms) = 0, which implies that s ≥ d(M).

For dim(M) ≥ δ(M). By similar argument, it suffices to assumeM = A. For dim(R) = d, it suffices
to find x1, · · · , xd ∈ m such that l(R/(x1, · · · , xd)) < ∞. Proceed by induction. If d = 0, then R
is Artinian and l(R) < ∞. Suppose d > 0. Let {p1, · · · , pr} be the set of minimal prime ideals of
R with dim(R/pi) = d for all i, which is finite since R is Noetherian. Since m ̸⊂ pi, there exists
x ∈ m \

⋃
i pi by prime avoidance, and dim(R) = dim(R/(x)) ≤ d − 1. By inductive hypothesis,

there exists x1, · · · , xd−1 ∈ m such that l(R/(x1, · · · , xd−1)) <∞. But R/(x1, · · · , xd−1, x) is equal
to R/(x1, · · · , xd−1), where xi ∈ R has image xi in R. Hence x1, · · · , xd−1, x ∈ m is the system we
are looking for.

In the case of R a Noetherian local ring with maximal ideal m, l(R/I) < ∞ implies that R/I is
Artinian. Hence I is m-primary. We say that {a1, · · · , an ∈ R} is a system of parameters of R
if it generates an m-primary ideal. If M is a finitely generated R-module with dimM = n, then
{x1, · · · , xn ∈M} is a system of parameters of M if (M/(x1, · · · , xn)M) <∞.

Corollary 8.3 (Krull’s principal ideal theorem). Let R be a Noetherian ring and I = (a1, · · · , an)
an ideal of R. If p ∈ Spec(R/I) is minimal, then ht(p) ≤ n. In particular, if I is a principal ideal,
then ht(p) ≤ 1.

Proof. In the local ring Rp ideal I is p-primary, so that δ(Ap) ≤ n. By the fundamental theorem,
ht(p) = dim(Ap) = δ(Ap).

In particular, we know that the height of a proper ideal of a Noetherian ring is finite.

Proposition 8.4. Let R be a Noetherian ring. Let p ∈ Spec(R) and ht(p) = n. Then p is minimal
among Spec(R/I) for some ideal I = (a1, · · · , an). For any b ∈ p, we have ht(p/(b)) ≥ n − 1; but
if b is among {a1, · · · , an}, then ht(p/(b)) = n− 1.

Geometrically, modding out an element of p decreases the height of p by at most 1; if this element
is a “building block”, then the reduction is exactly 1.
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9 Regular Rings

9.1 Regular Local Rings

Let R be a Noetherian local ring with maximal ideal m. The minimum number of elements of m
generating an m-primary ideal is δ(R) = dim(R). Let k = A/m be the residue filed. The minimum
number of elements of m generating m is called the embedding dimension of R, written as
embdim(R) = rankk(m/m

2) ≥ δ(R) = dim(R). The ring R is a regular local ring of dimension
d if d = embdim(R) = dim(R).

Translating proposition 8.14, we have the following important observation.

Proposition 9.1. If R is a regular local ring with {x1, · · · , xn} a regular system of generators,
then R/(x1, · · · , xr) is a regular local ring of dimension n− r.

Proposition 9.2. A regular local ring is an integral domain.

The following are two characterizations of regular local rings.

Proposition 9.3. Let (R,m, k) be a local Noetherian ring with embdim(R) = n. Then R is a
regular local ring if and only if grm(R)

∼= k[x1, · · · , xn] if and only if R̂m
∼= k[[x1, · · · , xn]].

9.2 Serre’s homological characterization

Let R be a ring. Define its global dimension gl dim(R) to be the supremum of proj dim(M) for
all R-modules M .

Theorem 9.4 (Serre). Let R be a Noetherian local ring. Then R is a regular local ring if and only
if gl dim(R) <∞, in which case gl dim(R) = dim(R).
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10 Connections to Differential Geometry
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11 Appendix: Some Homological Algebra

Abelian cat...

11.1 Ext and Tor

Complex. Double complex (equivalence) injective/projective module and resolution
Hom and Ext Tensor and Tor
An element x ∈ R is M-regular if there does not exists any a ∈M such that ax = 0.

Regular element calculation

The following lemma allows induction by dimension reduction.

Lemma 11.1 (Slicing lemma). Let R be a ring and M an R-module. Let x ∈ R be both R-regular
and M -regular. Let N be an R-module annihilated by x. Let R = R/xR and M = M/xM . Then

ExtiR(M,N) = Exti
R
(M,N) and TorRi (M,N) = TorRi (M,N)

Proof.

11.2 Flatness

7. (1) Yes, it’s possible. Choose f(t) = et to be the driving function. Then since x′ + x = 0
has solution x = Ce−t all decaying to 0, by variation of constants we find that the solution for
y′ + y = f(t) has solution y(t) = e−t(C +

∫ t
0 e

2sds) = Ce−t + et/2 which blows up as t→∞. The
initial condition does not influence the blowing-up phenomena.

(2) Conclusion: we can make all solutions bounded, but we cannot make them all to grow un-
bounded. As f(t) = p(t)eλt is given, we choose ai so that all roots of the characteristic polynomial
p(λ) satisfies Re(λi) < 0. Notice that since f(t) is bounded, Re(λ) ≤ 0. So all solutions of of the
forced ODE will be of the form x(t) = q(t)eλt + pi(t)e

λit where pi and q are polynomials. Since λ
and Re(λi) < 0 and Re(λ) ≤ 0, all such x(t) will be bounded.

On the other hand, there always exists a particular solution given by q(t)eλt, which does not grow
unbounded.

8. (1) The ODE is x′ + ax = g(t) with limt→∞ g(t) = b, we need to show that all solutions satisfy
limt→∞ x(t) = b/a.
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