
COFREENESS OF LUBIN-TATE THEORY

YUNHAN (ALEX) SHENG

Abstract. This article is a detailed survey of Section 3 of the paper The

chromatic Nullstellensatz by Burklund, Schlank, and Yuan [BSY22]. It aims

to prove that at the level of algebras, Lubin-Tate theory E is cofree, i.e., right
adjoint to some forgetful functor forgetting the structure of power operations.

This is arguably one of the most technical part of the paper, since it builds

upon previous works on power operations in Morava E-theory, most notably
by Strickland [Str97], [Str98], Ando-Hopkins-Strickland [AHS04], and Rezk

[Rez09]. We shall introduce these relevant results along the way.
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1. Introduction: power operations

Let E be a structured ring spectrum (for instance, a commutative S-algebra). It
carries the structure of power operations that refines power maps on E0. To define
power operations, let f : Σ∞

+X → E be an element of E0(X). The symmetric
group on m letters Σm acts diagonally on the m-fold smash product of f . Taking
the homotopy coinvariants of the action gives a map

Σ∞
+ (X×m

hΣm
) (Σ∞

+X)∧m
hΣm

E∧m
hΣm

E

Σ∞
+ (EΣm ×Σm

X×m) (EΣm)+ ∧Σm
(Σ∞

+X)∧m

f∧m

,

where the last map is given by the multiplicative structure on E. The composite
map is an element in E0(EΣm ×Σm X×m), so we have produced a map

Pm : E0(X) → E0(EΣm ×Σm X×m).

Definition. The map Pm constructed above is called them-th total power operation
on E. Restricting along the inclusion gives the m-th power operation

E0(X)
Pm−−→ E0(EΣm ×Σm X×m) → E0(X ×BΣm),

which is also denoted by Pm unambiguously. Here, m is referred to as the weight.
1
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The m-th power operation provides a refinement for the map x 7→ x×m taking
the m-fold power in the following sense:

E0(Xm ×Σm EΣm) E0(X ×BΣm)

E0(X) E0(Xm) E0(X)

Pm

x7→x×m diag

diag

∗→BΣmfib .

Example (Steenrod operations). Let E = HZ/2 be the mod-2 Eilenberg-Mac
Lane spectrum. The associated power operation of weight 2 is

P2 : H∗(X;Z/2) → H∗(X ×BΣ2) ∼= H∗(X;Z/2)⊗ (Z/2)[t].

For x ∈ Hn(X;Z/2), it is given by the Steenrod squares:

P2(x) = Sqn(x) + Sqn−1(x)t+ · · ·+ Sq0(x)tn ∈ H2n(X ×BΣ2).

Note that when t = 0, we recover the square P2(x) = Sqn(x) = x2. Rezk wrote
an illuminating explanation1 motivating the construction above: one might expect,
since cup product is commutative, that taking the square of a cohomology class
factors through the quotient X2/Σ2. But this isn’t quite true, since cup product
is only commutative up to the E∞-structure. So instead, the squaring map should
factor through X ×BΣ2, after restricting to the diagonal copy.

Example (Adams operations). Let E = KU be the complex K-theory spectrum.
According to the splitting principle, a class [x] ∈ K0(X) splits as a direct sum of line
bundles x = L1⊕· · ·⊕Ln. Taking the m-th power gives a new class Lm

1 ⊕· · ·⊕Lm
n .

This defines Adams operations ψm : K0(X) → K0(X). Since ψp(x) ≡ xp mod p
for any prime p, there exists an operation θp : K0(X) → K0(X) that witness ψp

as a lift of the Frobenius in the sense that

ψp(x) = xp + pθp(x).

Note that θp satisfy several identities and is called a p-derivation. It turns out that
one has analogous operations ψp and θp for any K(1)-local E∞-ring spectrum (fixed
at a prime p), such as p-adic K-theory. A generalization of θp will be introduced
later in Section 5, which turns out to be one of the key ingredients in the proof of
our main theorem.

The structure of power operations is captured by the notion of monads. As a
motivating example, the homotopy group π∗A of a commutative HFp-algebra A is
an algebra over a monad on the category of graded Fp-vector spaces. To be precise,
let C be the free monad on HFp-modules, defined by

C(M) =
∨
i≥0

M∧i/Σi,

so that the algebras over C are precisely commutative HFp-algebras. The monad C
is homotopically well-behaved and descends to a monad (which we still denote by C)
on the homotopy category of HFp-modules, which is equivalent to the category of
graded Fp-vector spaces via π∗. On this category, C sends V to the free object on V
in the category of graded-commutative Fp-algebras equipped with May-Dyer-Lashof

1https://mathoverflow.net/questions/6377/why-does-one-think-to-steenrod-squares-and-powers#:

~:text=Steenrod%20operations%20are%20an%20example,%2C%20but%20not%20too%

20commutative%22.

https://mathoverflow.net/questions/6377/why-does-one-think-to-steenrod-squares-and-powers#:~:text=Steenrod%20operations%20are%20an%20example,%2C%20but%20not%20too%20commutative%22.
https://mathoverflow.net/questions/6377/why-does-one-think-to-steenrod-squares-and-powers#:~:text=Steenrod%20operations%20are%20an%20example,%2C%20but%20not%20too%20commutative%22.
https://mathoverflow.net/questions/6377/why-does-one-think-to-steenrod-squares-and-powers#:~:text=Steenrod%20operations%20are%20an%20example,%2C%20but%20not%20too%20commutative%22.
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operations. Moreover, the natural map C(π∗M) → π∗(CM) is an isomorphism.
This is proved in the Chapter 9 of [BMMS86].

It is fruitful to study power operations coming from the multiplicative structure
of the underlying spectrum in a more general context, such as Morava E-theory,
which admits a unique E∞-structure due to the Goerss-Hopkins-Miller theorem.

Notation. For the remainder of the paper, fix the following data:

• a perfect field k of prime characteristic p > 0,
• a formal group G0 of height N over k,
• the associated Lubin-Tate theory E(k,G0) will be denoted by E(k).

LetA be a perfect k-algebra. Then we write E(A) for the E(k)-algebra E(A, (G0)A).
Then we have2

π0E(A) ∼=W (A)[[u1, · · · , uN−1]].

In [Rez09], Rezk constructs a monad T on E∗-modules that models the alge-
braic theory of power operations on K(N)-localized Morava E-theory E. We shall
go over his construction and summarize the properties of T in Section 2. The
reader will notice many similarities between Rezk’s results and classical results in
[BMMS86]. Consequently, there is a forgetful functor UT from T-algebras AlgT to
E0-algebras forgetting the structure of power operations. Let m be the Landweber
ideal (p, u1, · · · , uN−1) and Perfk be the category of perfect k-algebras. Let (−)#

be the colimit perfection which is left adjoint of the inclusion Perfk ↪→ Algk. Ex-
plicitly, it is given by taking the colimit of consecutive Frobenius maps. The main
goal of this paper is to prove the following adjunction.

Theorem 1.1 ([BSY22], 3.4). There is an adjunction

(UT(−)/m)♯ : AlgT ⇆ Perfk : π0E(−),

where the right adjoint π0E is fully faithful.

In other words, at the level of algebras, roughly speaking, Lubin-Tate theory E
is cofree, being right adjoint to some variant of the forgetful functor. By realizing
it as right adjoint, it is easier to construct maps into Lubin-Tate theories, to which
a large portion of [BSY22] is devoted.

We give an outline of the proof as well as the organization of this survey. Firstly,
we will show that it suffices to prove that a certain reduced unit map

evA : π0E(A) →WT(A)

is an isomorphism for any perfect k-algebra A. This is achieved by investigating
Rezk’s algebraic approximation functor T, which is explained in Section 2. Then,
using the Witt filtration introduced in Section 3, we further reduce it to showing

evk : π0E(k) →WT(k)

is an isomorphism. In Section 4 we interpret power operations as moduli problem
using deformation theory. This is crucial in proving the surjectivity of evk. Finally,
in Section 5 we introduce the notion of p-derivation and conclude the proof.

2This is a well-known folklore, and a proof is given in [Lur18].
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Remark 1.2. We will not distinguish between T (N)-local spectra and K(N)-local
ones since we are working with ring spectra. It is a consequence of the nilpotence
theorem that for a ring spectrum R, R ∧ T (N) ≃ 0 if and only if R ∧K(N) ≃ 0.
The reader will notice that while Rezk works in the K(N)-local category in [Rez09],
many results cited in [BSY22] are stated T (N)-locally.

2. Rezk’s algebraic approximation functor

In this section, we review the construction by [Rez09] of a monad T on E∗-
modules that mimics the aforementioned monad C on graded Fp-vector spaces.
Roughly speaking, this monad captures information of power operations in E.

We say that a E-module M is finitely generated (resp. finite free) if π∗M is
finitely generated (resp. finitely generated and free) over E∗. A E-module M is

finite free if and only if M is equivalent to a finite wedge ∨k
i=1Σ

diE. Let ModffE
denote the full subcategory of ModE consisting of finite free E-modules.

Proposition 2.1. The functor π∗ : hModffE → ModffE∗
is an equivalence.

Definition. The n-th extended power Pn : ModE → ModE is a functor given by

Pn(M) := (M∧En)hΣn
= (EΣn) ∧Σn

M∧En

The free E-algebra functor P : ModE → ModE is the functor P := ∨n≥0Pn.

Note that P defines a monad on the homotopy category hModE , and commuta-
tive E-algebras are exactly algebras over this monad. Write LK for the Bousfield
localization functor with respect to the Morava K-theory K = K(N).

Proposition 2.2. The functor Pn preserves K-homology isomorphisms. In partic-
ular, the natural transformation

LKPn(j) : LKPn → LKPnLK

is an isomorphism for j : M → LKM . The functor LKP : hModE → hModE
admits a unique monad structure, and j induces a map P → LKP of monads.

Definition. The functor P̂ := LKP is called the completed free algebra functor.

In general, Pn does not preserve finite free E-modules, but LKPn does.

Proposition 2.3 ([Rez09], 3.17). If M is finite free, then so is LKPn(M).

Consider the following diagram of categories

hModffE hModE hModE

ModffE∗
ModE∗ ModE∗

i LKPn

π∗π∗ π∗≃

j

Tn

,

where the square on the left commutes strictly.

Definition. The algebraic approximation functor Tn : ModE∗ → ModE∗ is defined
to be the left Kan extension of the functor π∗LKPni along π∗i = jπ∗. Define
T : ModE∗ → ModE∗to be the sum ⊕n≥0Tn.



COFREENESS OF LUBIN-TATE THEORY 5

Note that the left Kan extension exists because hModffE is essentially small and
ModE∗ is cocomplete. By the universal property of left Kan extensions, there is a
natural transformation

αn : Tn(π∗M) → π∗(LKPnM).

Again, let α : T(π∗M) → π∗(P̂M) be the sum ⊕n≥0αn.

Proposition 2.4 ([Rez09], 4.8). If M is finite free, then αn is an isomorphism.

This explains the nomenclature of Tn: the monad approximates the algebraic
structure (i.e., the structure of power operations) of LKPn.

Proposition 2.5 ([Rez09], 4.10). The functor T admits the structure of a monad

compatible with the monad structure on P̂ in the sense that the diagrams

π∗M T(π∗M)

π∗LKP(M)

α and

TT(π∗M) T(π∗M)

π∗P̂P̂(M) π∗P̂(M)

αTα α

commute, where the unlabeled maps are given by the structure maps of the monads.

Moreover, Rezk proved that the Tn’s are symmetric monoidal and preserve finite
free E∗-modules.

Now we wish to understand algebras Alg∗T over the monad T. Every T-algebra is a
graded-commutative E∗-algebra, so there is a forgetful functor UT : Alg∗T → AlgE∗

.

Definition. Let (C,⊗) be an abelian tensor category and A be the category of
commutative monoids in C with respect to ⊗. A functor U : D → A is plethyistic
if it reflects isomorphisms and admits both a left adjoint F and a right adjoint G.

By Beck’s monadicity theorem, D is equivalent to the category of algebras (resp.
coalgebras) over the monad UF (resp. comonad UG).

Proposition 2.6 ([Rez09], 4.19, 4.23). The forgetful functor UT : Alg∗T → AlgE∗

is plethyistic and commutes with colimits.

Remark 2.7. There is an L-complete version of the above construction. Recall
that E0 is a complete local ring with maximal ideal m = (p, u1, · · · , uN−1), and
a E∗-module M is L-complete in the sense of Greenless and May [GM92] if the
map L0M → M∧

m is an isomorphism. Here L0 is the 0-th left derived functor
of the m-adic completion (−)∧m, which is neither left nor right exact viewed as a
functor on ModE∗ . Rezk defined the completed approximation functors T∧

n on the
full subcategory of L-complete E∗-modules and proved that the natural compar-
ison map T∧

n(π∗M) → π∗(LKPnM) is an isomorphism if M is flat. Barthel and
Frankland [BF15] further showed that T∧

n is a monad and the forgetful functor
U∧
T : Alg∗T∧ → AlgE∗

is plethyistic. The completed version approximates better
since it takes into account the fact that π∗LKPM is L-complete.

Therefore, UT admits both a left adjoint FT and a right adjoint WT:

Alg∗T AlgE∗

UT

FT

WT

,
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where WT is explicitly given by

(2.8) WT(−) = HomAlgE∗
(T(E0),−).

In other words, an element ofWT(B) can be thought of as a B-valued functional on
the module of power operations. The unit evB : B → WTUT(B) of the adjunction
sends b ∈ B to the functional which evaluates power operations on b. It can
alternatively be thought of as a universal lift of the total power operation on B to
a T-algebra map, in the following sense: for a K(N)-local commutative E-algebra
R, composing evπ0R : π0R→WT(π0(R)) with the embedding

WT(π0(R)) ∼= HomAlgE∗
(T(E0), π0R) ↪→ HomModE∗

(T(E0), π0R) ∼=
∏
i

R0(BΣi)

gives a map π0R →
∏

iR
0(BΣi) that can be identified with the product of power

operations. Furthermore, define the reduced evaluation evA to be as follows:

WTUTπ0E(A)

π0E(A) WT(A)evA

evA WT(−/m) .

As mentioned in the introduction, to prove Theorem 1.1 it amounts to showing that
evA is an isomorphism. Indeed, consider the following series of adjunctions:

AlgT CRingE0
CRingk Perfk

(−)#

WT

UT

.

If evA is an isomorphism, then the right adjoint above is naturally equivalent to
the functor π0E(−), which is precisely the desired adjunction of Theorem 1.1. The
fully faithfulness follows from the fact that the counit map (π0E(A)/m)# → A is an
isomorphism. From now on we will focus on proving that evA is an isomorphism.

Example. If height N = 1, then E = E(Fp,Gm) = KUp is the p-adic K-theory,
and Alg∗T can be identified with the category CRingδ of δ-rings. The p-typical
Witt vectors W = WT : Cring → CRingδ is right adjoint to the forgetful functor
UT = U : CRingδ → CRing. This explains why we use the letter W for the right
adjoint. Note that W (A) = π0E(A), so that composing with the adjunction

(−/p)♯ : CRing ⇆ PerfFp
: incl

gives an adjunction

(U(−)/p)♯ : CRingδ ⇆ PerfFp
: π0E(−).

This provides evidence for Theorem 1.1 to be true.

3. The Witt filtration

In this section we shall further reduce Theorem 1.1 to proving that

evk : π0E(k) →WT(A)

is an isomorphism. The tool we use for this reductive step is the Witt filtration,
which is a filtration on WT induced, via the identification (2.8), by the weight
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grading on the monad T = ⊕jTj . To be precise, note that any power operation
λ ∈ T(E0) determines, via evaluation, a functional

λ∗ :WT(A) ∼= HomAlgE∗
(T(E0), A) → A

It is easy to verify that the subset

W≥r
T (A) := {v ∈WT(A) | λ∗v = 0 for any λ ∈ T(E0) of weight less than p

r}

of WT(A) is an ideal.

Definition. Define W≤r
T (A) :=WT(A)/W

≥r+1
T (A). The Witt filtration on WT(A)

is the filtration

WT(A) → · · · →W≤2
T (A) →W≤1

T (A) →W≤0
T (A) ∼= A.

The Witt filtration behaves well with respect to the additive power operations:

Proposition 3.1 ([BSY22], 3.24). The r-th total additive power operation

Pr/Itr : E
0 → E0(BΣpr )/Itr

factors, as a ring map, through the composite E0 evE0−−−→WT(E0) →W≤r
T (E0).

Viewing T(E0) as a polynomial E0-algebra, Strickland computed ([Str98], 3.6)
that the E0-module of indecomposables of weight pr is free of rank

d̄(r) =

N−1∏
j=1

pr+1 − 1

pj − 1
,

where d̄(r) counts the number of subgroups of (Qp/Zp)
N of cardinality pr. So we

obtain a non-canonical identification

WT(A) ∼= HomAlgE∗
(T(E0), A) ∼=

∏
r≥0

Ad̄(r).

It turns out that this identification also behaves well with respect to the Witt
filtration, in the following sense.

Proposition 3.2 ([BSY22], 3.27). For A ∈ AlgE0
, there is a natural isomorphism

of abelian groups

W=r
T :=W≥r

T (A)/W≥r+1
T (A) ∼= Ad̄(r)

that fits into the following commutative diagram of sets:

W≥r
T (A) W=r

T (A)

∏
i≥r A

d̄(i) Ad̄(r)

∼=∼=

Since π0E(A) ∼=W (A)[[u1, · · · , uN−1]], we can view WT(A) as a W (A)-algebra.
For a ∈ A, let [a] denote its lift inW (A). Then for v ∈WT(A) and λ ∈ T(E0)pr , the

A-module structure is given by λ∗([a] ·v) = ap
r

λ∗v ([BSY22], 3.28). This A-module
structure descends to the associated graded of the filtration, so we have:

Proposition 3.3 ([BSY22], 3.29). As an A-module, W=r
T (A) is free of rank d̄(r).

Now we are ready to prove the reduction step.
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Theorem 3.4 ([BSY22], 3.31). If evk : π0E(k) →WT(k) is an isomorphism, then
evA : π0E(A) →WT(A) is an isomorphism for any perfect k-algebra A.

The proof is explained in detail in the original paper and we refrain from copying
it verbatim here. To summarize it from a different angle, consider the diagram

π0E(k)⊗W (k) W (A) WT(k)⊗W (k) W (A)

π0E(A) WT(A)

evk⊗1

evA

.

Our previous analysis shows that the right-hand map is an isomorphism on the
associated graded and hence also after the completion with respect to the filtration.
The left-hand map is an isomorphism after m-adic completion. Finally, the theorem
follows from comparing these two filtrations, i.e., the m-adic topology and WT-adic
topology conincide on π0E(k).

4. Moduli interepretation of power operations

One of the key inputs in the proof of our main result is the following.

Theorem 4.1 ([BSY22], 3.13). The mod-m total additive power operation

P r : E0 → E0(BΣpr )/(Itr,m)

is surjective for any r ≥ 0.

The entire Section 3.4 Rigidity of isogenies of [BSY22] is devoted to proving
this result. To understand the whole picture requires background knowledge on the
moduli-theoretic interpretation of power operations in Morava E-theory. A survey
paper that does a great job explaining is [Stap], and for a more concise summary
see the writeup [YS] taken by the author while reading the aforementioned survey.

To briefly summarize the result used here , let A be a finite abelian group and
consider the r-th power operation Pr : E0(BA) → E0(BA × BΣr). Strickland
([Str97]) proved that E0(BΣr) is a free E0-module, so that by the Künneth formula
Pr takes the form

Pr : E0(BA) → E0(BA)⊗E0 E0(BΣr).

This map is multiplicative but not additive. There is a smallest ideal Itr ⊂ E0(BΣr)
called the transfer ideal such that the quotient

Pr/Itr : E
0(BA) → E0(BA)⊗E0 E0(BΣr)/Itr

is additive. We call the ring homomorphism Pr/Itr the additive power operation.

In the adjacent world of algebraic geometry, there are so-called moduli problems,
which are functors that associate to each objectX in the source category a collection
of geometric objects parametrized by X. We say that this moduli problem has a
solution if the functor is (co)representable. For instance, the functor

LT : complete local rings → groupoids

that sends a complete local ring (R,m) to the groupoid of deformations of G0/k to
(R,m) is, by the Lubin-Tate theorem, corepresented by a complete local ring OLT
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non-canonically isomorphic to W (k)[[u1, · · · , uN−1]]. Likewise, one can form other
moduli problems

Hom(A,Gu), Subpr (Gu) : complete local rings → groupoids

that encode extra data that builds upon the Lubin-Tate moduli problem. We leave
the detailed definition of these moduli problems to the reference given above. We
only need to know that their corepresenting rings are finitely generated and free as
modules over the Lubin-Tate ring OLT.

Hopkins, Kuhn, and Ravenel ([HKR00]) proved that there is a canonical isomor-
phism between E0(BA) and the corepresenting ring of Hom(A,Gu), and Strickland
([Str98]) proved that E0(BΣr)/Itr is canonically isomorphic to the corepresenting
ring of Subpr (Gu). The seminal work of Ando, Hopkins, and Strickland ([AHS04])
showed that the additive r-th power operation corresponds to the ring of functions
on the map of moduli problems

Subpr (Gu)⊗LT Hom(A∨,Gu) → Hom(A∨,Gu).

Let ϕr : G0 → G(r)
0 be the r-fold relative Frobenius isogeny. Then Subpr (Gu) can

be identified with the deformation Def(ϕr) classifying deformations of ϕr. In our

case A is trivial, so Hom(A∨,Gu) degenerates to Def(G(r)
0 ). Moreover, since k is

a perfect Fp-algebra, it can be shown that any complete local ring k → B/mB

lifts uniquely to a map W (k) → B. Combining all these together we obtain a
commutative diagram

(4.2)

Def(ϕr) Def(G0) Spf(k)

Def(G(r)
0 ) Spf(W (k))

τ

σ

,

where σ and τ remembers the source and target, respectively. Therefore, the mod-m
version P r corresponds to the map

Spf(k)×Def(G0)
σ Def(ϕr) → Spf(k)×Spf(W (k)) Def(ϕr)

P r−−→ Spf(k)×Spf(W (k)) Def(G(r)
0 )

∼= Spf(k)×Spf(W (k)) Def(G0) → Def(G0).

The last map is a closed immersion. The composite of first two maps comes from
the left-hand square of (4.2) base changed along the map Spf(k) → Spf(W (k)).
More precisely, it is obtained from taking the fiber product of the map

(σ, τ) : Def(ϕr) → Def(G(r)
0 )×Spf(W (k)) Def(G0)

with Spf(k) over Spf(W (k)) and then viewing everything as over Def(G0). Thus we
have reduced Theorem 4.1 to showing that the map on the ring of functions of (σ, τ)
is surjective. The upshot is that we have turned our original problem in topology
into a problem in algebraic geometry, and now we have tools from deformation
theory at our disposal.

Lemma 4.3 ([BSY22], 3.40). Let B be a complete local ring with p = 0 in B. Let
G and G′ be formal groups over B of height n ≥ 1 and let ψ0 : π∗G → π∗G′ be the
map pulled back along the special fibers π : B → B/mB. Then there is at most one
map ψ : G → G′ such that π∗ψ = ψ0.
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Proof. Suppose ψ0 = 0. It suffices to show that the map ψ extending ψ0 is likewise
zero. After choosing local coordinates, the map ψ : G → G′ corresponds to a map
OG′ ∼= B[[y]] → B[[x]] ∼= OG, which is determined by the image y 7→ g(x). By
assumption g(x) ≡ 0 mod mB . Suppose ψ is nonzero, then here exists a j such

that all coefficients of g are in mj
B , so that g([p](x)) = p · g(x) ≡ 0 mod mj+1

B . On

the other hand, there exists an i such that g(x) ≡ axi mod (mj+1
B , xi+1) for some

a ∈ mj
B . Since G is of height n, we have

g([p]x) ∼= a(unx
pn

)i mod (mj+1
B , xi+1)

for some unit un. This contradicts with g([p]x) ≡ 0 mod mj+1
B . Hence ψ = 0. □

Remark 4.4. This is what the original authors meant by the rigidity of isogenies:
there is only one way of extending the isogeny over the special fibers.

Proposition 4.5 ([BSY22], 3.39). Let q0 : G0 → G′
0 be an isogeny of formal groups

over k. Then the map of schemes

(σ, τ) : Def(q0) → Def(G0)×Spf(W (k)) Def(G′
0)

is a closed immersion.

Proof. Since (σ, τ) corresponds to a map of complete local rings, it suffices to show
that the corresponding map is surjective modulo the maximal ideal. Geometrically,
this corresponds to showing that the map

Θ : Spf(k)×Def(G0)
σDef(q0)

τ ×Def(G′
0)
Spf(k) → Spf(k)

of schemes is a closed immersion. Here, the map Spf(k) → Def(G0) classifies
sending a k-algebra B to the trivial deformations of G0 to B (and similarly for G′

0).
Thus, the left-hand side classifies deformations of q0 where the target and source
are trivial deformations. Therefore, we have found an isogeny a : f∗G0 → f∗G′

0 for
every f : k → B such that π∗q = q0 over the special fiber. By Lemma 4.3, there is
exactly one of extending q0 to such a q, which means that Θ is an isomorphism. □

5. Using the p-derivation

In this section, we put in place the last piece of the puzzle, the p-derivation, and
use it to complete the proof of our main theorem, which has already been reduced
to showing that evk : π0E(k) →WT(k) is an isomorphism.

Definition. A p-derivation is an operation θ ∈ T(E0)p of weight p such that for
any T-algebra B and x, y ∈ B, we have

θ(x+ y) = θ(x) + θ(y) +
1

p
(xp + yp − (x+ y)p).

The existence and construction of p-derivations can be found in the works of
Rezk or Mathew, Naumann, and Noel [MNN15]. Note that θ is a non-additive
power operation, but it is additive after reduction:

θ(x+ y) ≡ θ(x) + θ(y) mod (xy).

The crucial property that we make use of the p-derivation is

(5.1) θj(pkx+ pk+1(· · · )) ≡ pk−jxp
j

mod pk−j+1.
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Recall that evk can be identified with the total mod-m additive power operations
P r : E0 → E0(BΣpr )/(Itr,m). We now prove that it is injective.

Lemma 5.2 ([BSY22], 3.45(1)). Let x ∈ E0 be an element such that P j(x) ̸= 0 for
1 ≤ j ≤ n. There exists an element y ∈ E0 such that the image of pix+ pi+1y for
each i under the composite

E0 evk−−→WT(k) →W≤i+j
T (k)

is nonzero.

Proof. Since P j(x) ̸= 0, there exists an additive power operation Q ∈ T(E0) of

weight pj such that Qx ̸= 0. Consider the operation θiQ. By (5.1) we have

θiQ(pix+ pi+1y) = θi(piQ(x) + pi+1Q(y)) ≡ Q(x)p
i

̸≡ 0 mod p.

Since θiQ has weight pi+j , pix+ pi+1y is indeed detected in W≤i+j
T (k). □

Lemma 5.3 ([BSY22], 3.32). Let x ∈ E0 be such that x ̸≡ 0 mod p. There exists
an r > 0 such that P r(x) ̸≡ 0 mod m.

Proof. See Section 3.3 of [BSY22]. This relies on a transchromatic induction that is
at the heart of the whole paper. It is explained in detail in Section 5 of [BSY22]. □

Theorem 5.4. The total mod-m additive power operation P r is injective.

Proof. We prove the theorem by showing that for any y ∈ E0, there is an additive
power operation Q and some i such that the mod-m reduction of θiQ(y) is nonzero.
Write y = piz for some z ̸≡ 0 mod p. By Lemma 5.3 there exists an additive
power operation Q of weight pj such that Qz ̸≡ 0 mod m. By (5.1) we have

θiQ(y) ≡ Q(z)p
i

mod p, which is nonzero mod m since Qz ∈ k. □

The surjectivity of evk is slightly trickier. Since the m-adic topology on E(k) is
the finest topology induced by a collection of maps out to Artinian W (k)-algebras,

it suffices to show that π0E(k) → W≤r
T (k) is surjective for each r. This will be

done by a clever dimension counting argument. We need the following lemma.

Lemma 5.5. Let O be a discrete valuation ring with uniformizer π and residue field
κ = O/π. Let V0, V1, · · · , Vr be a collection of finite dimensional κ-vector spaces
and E a finitely generated O-module equipped with surjections fi : E/πE → Vi of
κ-vector spaces for 0 ≤ i ≤ r satisfying the following condition: if x ∈ E is such
that fi(x) ̸= 0 for all i, then for any y ∈ E we have πix+πi+1y ̸= 0. Then we have
the following bound on the O-module length of E:

lenO(E) ≥
r∑

i=0

dimκ(Vi).

Proof. Let gri = πiE/πi+1E denote the i-th piece of the associated graded of the
π-adic filtration on E . Now choose sections gi : Vi → E/πE of the surjections fi.
The condition on fi implies that πigi : Vi → gri is injective, so that we have

lenO(E) =
∑
i≥0

dimκ(gri) ≥
r∑

i=0

dimκ(Vi).

□
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Let E≤r
T (k) denote the image of the composite E0

evk−−→ WT(k) → W≤r
T (k). In

the following proof of surjectivity, we start to piece together previous results.

Theorem 5.6. The map π0E(k) →W≤r
T (k) is surjective for each r.

Proof. It suffices to show that the induced map E≤r
T (k) → W≤r

T (k) is an isomor-
phism, and to do that we only need to prove that they have equal lengths as
W (k)-modules. Since E0(BΣpr )/Itr is free of rank d̄(r) by a result from [Str98],

using Lemma 5.5 we obtain a lower bound on the length of E≤r
T :

lenW (k)

(
E≤r

T (k)
)
≥

r∑
j=0

d̄(j).

Specifically, this is obtained by setting O = W (k), E = E≤r
T (k), and fi = P r−i

factored through W≤r
T (k) by Proposition 3.1. The fact that the fi’s are surjective

is a consequence of Theorem 4.1, and the condition is the lemma is satisfied because
of Lemma 5.2. Now combine with Proposition 3.2, which computes the length of
W=r

T as W (k)-module to be d̄(r), we arrive at the inequality
r∑

i=0

d̄(i) ≤ len
(
E≤r

T (k)
)
≤ len

(
W≤r

T (k)
)
=

r∑
i=0

len
(
W=i

T (k)
)
=

r∑
i=0

d̄(i),

which implies that E≤r
T (k) and W≤r

T (k) have same lengths as W (k)-modules. □
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