Complex Multiplication

Yunhan (Alex) Sheng

yhsheng@uchicago.edu

UChicago REU, August 2022

1

5900

・ロト ・日下 ・日下

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

Outline of the talk

2 CM of elliptic curves

3 Generalization to abelian Varieties

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

Ramification

• Suppose that L/K is **abelian**, i.e., Gal(L/K) is an abelian group.

Ramification

- Suppose that L/K is **abelian**, i.e., Gal(L/K) is an abelian group.
- How does prime ideals p in K split in L?

Ramification

- Suppose that L/K is abelian, i.e., Gal(L/K) is an abelian group.
- How does prime ideals p in K split in L?
- Consider $L = \mathbb{Q}(i)/\mathbb{Q} = K$. Then

Ramification

- Suppose that L/K is abelian, i.e., Gal(L/K) is an abelian group.
- How does prime ideals p in K split in L?
- Consider $L = \mathbb{Q}(i)/\mathbb{Q} = K$. Then

• $\mathfrak{p} = (2) = (1 - i)^2$, in which case \mathfrak{p} is ramified;

Ramification

- Suppose that L/K is **abelian**, i.e., Gal(L/K) is an abelian group.
- How does prime ideals p in K split in L?

• Consider
$$L = \mathbb{Q}(i)/\mathbb{Q} = K$$
. Then

1
$$\mathfrak{p} = (2) = (1 - i)^2$$
, in which case \mathfrak{p} is **ramified**;

2 $\mathfrak{p} = (3)$ remains prime in $\mathbb{Q}(i)$, in which case \mathfrak{p} is **inert**;

Ramification

- Suppose that L/K is abelian, i.e., Gal(L/K) is an abelian group.
- How does prime ideals p in K split in L?

• Consider
$$L = \mathbb{Q}(i)/\mathbb{Q} = K$$
. Then

1
$$\mathfrak{p} = (2) = (1 - i)^2$$
, in which case \mathfrak{p} is **ramified**;

- **2** $\mathfrak{p} = (3)$ remains prime in $\mathbb{Q}(i)$, in which case \mathfrak{p} is **inert**;
- **3** $\mathfrak{p} = (5) = (2 + i)(2 i)$, in which case \mathfrak{p} splits completely.

Ramification

- Suppose that L/K is abelian, i.e., Gal(L/K) is an abelian group.
- How does prime ideals p in K split in L?

• Consider
$$L = \mathbb{Q}(i)/\mathbb{Q} = K$$
. Then

1
$$\mathfrak{p} = (2) = (1 - i)^2$$
, in which case \mathfrak{p} is **ramified**;

- **2** $\mathfrak{p} = (3)$ remains prime in $\mathbb{Q}(i)$, in which case \mathfrak{p} is **inert**;
- **3** $\mathfrak{p} = (5) = (2+i)(2-i)$, in which case \mathfrak{p} splits completely.
- If every prime in K is unramified in L, then L/K is unramified.

The case over \mathbb{Q}

• Can we explicitly describe the set of numbers that generates (unramified) abelian extensions of \mathbb{Q} ?

Theorem 1 (Kronecker-Weber)

Every finite abelian extension of \mathbb{Q} is contained in a cyclotomic extension $\mathbb{Q}(\zeta_N)$ for some N > 0.

Theorem 2 (Hermite-Minkowski)

There are no unramified extensions of \mathbb{Q} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 What if we change the base field K = Q to an arbitrary number field (i.e. finite extensions of Q)?

- What if we change the base field K = Q to an arbitrary number field (i.e. finite extensions of Q)?
- Kronecker's Jugendtraum ("mein liebster Jugendtraum"), Hilbert's twelfth problem, explicit class field theory.

- What if we change the base field K = Q to an arbitrary number field (i.e. finite extensions of Q)?
- Kronecker's Jugendtraum ("mein liebster Jugendtraum"), Hilbert's twelfth problem, explicit class field theory.
- Complex Multiplication solves the case $K = \mathbb{Q}(\sqrt{-D})$ an imaginary quadratic field (or more generally, when K is a imaginary quadratic extension of a totally real field).

- What if we change the base field K = Q to an arbitrary number field (i.e. finite extensions of Q)?
- Kronecker's Jugendtraum ("mein liebster Jugendtraum"), Hilbert's twelfth problem, explicit class field theory.
- Complex Multiplication solves the case $K = \mathbb{Q}(\sqrt{-D})$ an imaginary quadratic field (or more generally, when K is a imaginary quadratic extension of a totally real field).
- This is the only known case besides K = Q. The problem is far from being completely resolved.

- What if we change the base field K = Q to an arbitrary number field (i.e. finite extensions of Q)?
- Kronecker's Jugendtraum ("mein liebster Jugendtraum"), Hilbert's twelfth problem, explicit class field theory.
- Complex Multiplication solves the case $K = \mathbb{Q}(\sqrt{-D})$ an imaginary quadratic field (or more generally, when K is a imaginary quadratic extension of a totally real field).
- This is the only known case besides K = Q. The problem is far from being completely resolved.
- Complex Multiplication: this piece of **arithmetic** information will be extracted from studying **geometric** objects, namely, elliptic curves (or more generally, abelian varieties).

SQC

Outline of the talk

3 Generalization to abelian Varieties

Complex Multiplication 7/31

August 2022

What is an elliptic curve?

By an **elliptic curve** E/K, we understand

- a one-dimensional nonsingular projective variety over K of genus one, together with a special point O ∈ E;
- or more naively, a curve given by so-called Weierstrass equation

$$y^2 = x^3 + Ax + B, \quad A, B \in K$$

(N.B. the equation takes this simplified form only if $char(\overline{K}) \neq 2, 3$.) Two elliptic curves are isomorphic iff they have the same *j*-invariant:

$$j(E) = \frac{1728(4A)^3}{-16(4A^3 + 27B^2)}$$

Yunhan Sheng (UChicago)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

Elliptic curves: basics

• An elliptic curve can be endowed with a group structure, which we now describe.

August 2022

Elliptic curves: basics

- An elliptic curve can be endowed with a group structure, which we now describe.
- An **isogeny** between elliptic curves E_1 and E_2 is a morphism $\phi: E_1 \to E_2$ of varieties such that $\phi(O) = O$.

August 2022

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Elliptic curves: basics

- An elliptic curve can be endowed with a group structure, which we now describe.
- An **isogeny** between elliptic curves E_1 and E_2 is a morphism $\phi: E_1 \to E_2$ of varieties such that $\phi(O) = O$.
- $\bullet\,$ For example, the multiplication-by- $m\,$ map $[m]:E\rightarrow E\,$ by

$$P \mapsto mP = \underbrace{P + P + \ldots + P}_{m \text{ times}}$$

is an isogeny.

August 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Elliptic curves: basics

- An elliptic curve can be endowed with a group structure, which we now describe.
- An **isogeny** between elliptic curves E_1 and E_2 is a morphism $\phi: E_1 \to E_2$ of varieties such that $\phi(O) = O$.
- For example, the multiplication-by-m map $[m]: E \to E$ by

$$P \mapsto mP = \underbrace{P + P + \ldots + P}_{m \text{ times}}$$

is an isogeny.

• Let End(E) be the ring of isogenies from E to itself, is the map

$$[-]: \mathbb{Z} \to \operatorname{End}(E)$$

is an isomorphism, or is $\operatorname{End}(E)$ strictly larger than \mathbb{Z} ?

イロト 不得 トイヨト イヨト ニヨー

CM of elliptic curves

Theorem 3

Let E/\mathbb{C} be an elliptic curve. Then either $\operatorname{End}(E) = \mathbb{Z}$ or $\operatorname{End}(E)$ is isomorphic to an order of $\mathbb{Q}(\sqrt{-D})$ for some D > 0.

N.B. Let K be a number field. An **order** R of a K is a subring of K that is finitely generated as \mathbb{Z} -module and spans K over \mathbb{Q} .

For example, $\mathbb{Z}[i]$ and $\{a + 2bi \mid a, b \in \mathbb{Z}\}$ are both orders of $\mathbb{Q}(i)$. The ring of integers is the largest order.

Definition 4

An elliptic curve E/\mathbb{C} has **complex multiplication** (or CM for short) by R if R = End(E) is an order of an imaginary quadratic field.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

Elliptic curves over $\mathbb C$

• Two lattice $\Lambda_1, \Lambda_2 \subset \mathbb{C}$ are **homothetic** if $\Lambda_2 = \alpha \Lambda_1$ for some $\alpha \in \mathbb{C}$.

Complex Multiplication 10/31

August 2022

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Elliptic curves over $\mathbb C$

- Two lattice $\Lambda_1, \Lambda_2 \subset \mathbb{C}$ are **homothetic** if $\Lambda_2 = \alpha \Lambda_1$ for some $\alpha \in \mathbb{C}$.
- (Uniformization) For any E/\mathbb{C} , there exists a unique lattice $\Lambda \subset \mathbb{C}$ such that $\mathbb{C}/\Lambda \cong E(\mathbb{C})$ as (complex) Lie groups.

Complex Multiplication 10/31

August 2022

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Elliptic curves over $\mathbb C$

- Two lattice $\Lambda_1, \Lambda_2 \subset \mathbb{C}$ are **homothetic** if $\Lambda_2 = \alpha \Lambda_1$ for some $\alpha \in \mathbb{C}$.
- (Uniformization) For any E/C, there exists a unique lattice Λ ⊂ C such that C/Λ ≅ E(C) as (complex) Lie groups.
- Conversely, every complex torus arises as an elliptic curve.

Complex Multiplication 10/31

August 2022

Elliptic curves over $\mathbb C$

- Two lattice $\Lambda_1, \Lambda_2 \subset \mathbb{C}$ are **homothetic** if $\Lambda_2 = \alpha \Lambda_1$ for some $\alpha \in \mathbb{C}$.
- (Uniformization) For any E/\mathbb{C} , there exists a unique lattice $\Lambda \subset \mathbb{C}$ such that $\mathbb{C}/\Lambda \cong E(\mathbb{C})$ as (complex) Lie groups.
- Conversely, every complex torus arises as an elliptic curve.
- In fact, there is an equivalence of categories between:
 - elliptic curve E over $\mathbb C$ with isogenies, and
 - $\bullet\,$ lattices $\Lambda\subset\mathbb{C}$ up to homothety, with

$$\operatorname{Hom}(\Lambda_1,\Lambda_2) = \{ \alpha \in \mathbb{C} \mid \alpha \Lambda_1 \subset \Lambda_2 \}.$$

Yunhan Sheng (UChicago)

・ロト ・ 同ト ・ ヨト ・ ヨト

SQA

Proof of Theorem 3

Proof of Theorem 3.

Suppose $E/\mathbb{C} \cong \mathbb{C}/\Lambda$ as Lie groups. Up to homothety replace Λ by $\mathbb{Z} + \tau \mathbb{Z}$ for some $\tau \in \mathbb{C} \setminus \mathbb{R}$. For any $\alpha \in \text{End}(E) \cong \{\alpha \in \mathbb{C} \mid \alpha \Lambda = \Lambda\}$, there exists $m, n, p, q \in \mathbb{Z}$ such that $\alpha = m + n\tau$ and $\alpha \tau = p + q\tau$. Eliminate τ , we get

$$\alpha^2 - (m+q)\alpha + np = 0,$$

so that $\operatorname{End}(E)$ is an integral extension of \mathbb{Z} . If $\alpha \notin \mathbb{Z}$, then $n \neq 0$, so eliminating *n* we get an quadratic equation

$$n\tau^2+(m-q)\tau-p=0.$$

Since $\tau \notin \mathbb{R}$, $\mathbb{Q}(\tau)$ is an imaginary quadratic field.

・ロト ・ 同ト ・ ヨト ・ ヨト

Construction of class fields

Theorem 5

Let R be an order of an imaginary quadratic field K. Let E/\mathbb{C} be an elliptic curve with CM by R. Then

- K(j(E)) is the maximal unramified extension of K
- *K*(*j*(*E*), *x*(*E*_{tors})) is the maximal abelian extension of *K*, where *E*_{tors} are points of *E* of finite order, and *x*(-) is the function taking *x*-coordinate.

(N.B. the function x(-) only works if $j(E) \neq 0, 1728$; otherwise we need something more subtle called Weber function.)

Construction of class fields

Theorem 5

Let R be an order of an imaginary quadratic field K. Let E/\mathbb{C} be an elliptic curve with CM by R. Then

- K(j(E)) is the maximal unramified extension of K
- *K*(*j*(*E*), *x*(*E*_{tors})) is the maximal abelian extension of *K*, where *E*_{tors} are points of *E* of finite order, and *x*(-) is the function taking *x*-coordinate.

(N.B. the function x(-) only works if $j(E) \neq 0, 1728$; otherwise we need something more subtle called Weber function.)

• Moral of the story: *j*-invariant and coordinate of torsion points generate abelian extensions of $\mathbb{Q}(\sqrt{-D})$ for some D > 0.

Complex Multiplication 13/31

August 2022

From numbe theory: idèles

 From number theory: let K be a global field (finite extensions of Q). The completion of K_v at a place (given by an absolute value) v of K is a local field (think about Q_p). Let O_v be the valuation subring (think about Z_p), the **idèle group** is the topological group

$$\mathbf{A}_{\mathcal{K}}^{\times} = \left\{ (a_{\nu}) \in \prod_{\nu} \mathcal{K}_{\nu}^{\times} \mid a_{\nu} \in \mathcal{O}_{\nu}^{\times} \text{ for all but finitely many } \nu \right\}.$$

Complex Multiplication 13/31

August 2022

From numbe theory: idèles

 From number theory: let K be a global field (finite extensions of Q). The completion of K_v at a place (given by an absolute value) v of K is a local field (think about Q_p). Let O_v be the valuation subring (think about Z_p), the **idèle group** is the topological group

$$\boldsymbol{\mathsf{A}}_{\mathcal{K}}^{\times} = \left\{ (a_{v}) \in \prod_{v} \mathcal{K}_{v}^{\times} \mid a_{v} \in \mathcal{O}_{v}^{\times} \text{ for all but finitely many } v \right\}.$$

• Packing *local* information in the *global* setting.

Complex Multiplication 13/31

August 2022

From numbe theory: idèles

 From number theory: let K be a global field (finite extensions of Q). The completion of K_v at a place (given by an absolute value) v of K is a local field (think about Q_p). Let O_v be the valuation subring (think about Z_p), the **idèle group** is the topological group

$$\mathbf{A}_{K}^{\times} = \left\{ (a_{v}) \in \prod_{v} K_{v}^{\times} \mid a_{v} \in \mathcal{O}_{v}^{\times} \text{ for all but finitely many } v \right\}.$$

- Packing *local* information in the *global* setting.
- The fractional ideal (x) associated to an idèle $x \in \mathbf{A}_{K}^{\times}$ is

$$(x) = \prod_{\mathfrak{p}} \mathfrak{p}^{\mathrm{ord}_{\mathfrak{p}}(x_{\mathfrak{p}})},$$

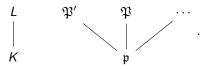
where $(x_p) = (x)\mathcal{O}_p$.

・ロト ・四ト ・ヨト ・ヨト

∃ <\0<</p>

From number theory: Frobenius substitution

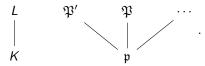
• Let L/K be a finite Galois extension of number fields and \mathfrak{P} a prime lying over an unramified prime \mathfrak{p} :



<□▶ <□▶ < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From number theory: Frobenius substitution

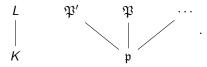
• Let L/K be a finite Galois extension of number fields and \mathfrak{P} a prime lying over an unramified prime \mathfrak{p} :



• Let $\kappa_{\mathfrak{P}} = \mathcal{O}_L/\mathfrak{P}$ and $\kappa_{\mathfrak{p}} = \mathcal{O}_K/\mathfrak{p}$ be the corresponding residue fields.

From number theory: Frobenius substitution

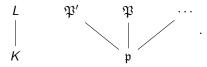
• Let L/K be a finite Galois extension of number fields and \mathfrak{P} a prime lying over an unramified prime \mathfrak{p} :



- Let $\kappa_{\mathfrak{P}} = \mathcal{O}_L/\mathfrak{P}$ and $\kappa_{\mathfrak{p}} = \mathcal{O}_K/\mathfrak{p}$ be the corresponding residue fields.
- The Frobenius substitution $\sigma_{\mathfrak{P}}$ is the generator of $\operatorname{Gal}(\kappa_{\mathfrak{P}}/\kappa_{\mathfrak{p}})$, which is cyclic since $\kappa_{\mathfrak{P}}$ and $\kappa_{\mathfrak{p}}$ are finite fields.

From number theory: Frobenius substitution

• Let L/K be a finite Galois extension of number fields and \mathfrak{P} a prime lying over an unramified prime \mathfrak{p} :



- Let $\kappa_{\mathfrak{P}} = \mathcal{O}_L/\mathfrak{P}$ and $\kappa_{\mathfrak{p}} = \mathcal{O}_K/\mathfrak{p}$ be the corresponding residue fields.
- The Frobenius substitution $\sigma_{\mathfrak{P}}$ is the generator of $\operatorname{Gal}(\kappa_{\mathfrak{P}}/\kappa_{\mathfrak{p}})$, which is cyclic since $\kappa_{\mathfrak{P}}$ and $\kappa_{\mathfrak{p}}$ are finite fields.
- If L/K is abelian, then $\sigma_{\mathfrak{P}} = \sigma_{\mathfrak{P}'}$, so we simply write $\sigma_{\mathfrak{p}}$.

From number theory: Artin reciprocity

• Let L/K be a finite abelian extension of number fields. Let K^{ab} be the maximal abelian extension of K.

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

From number theory: Artin reciprocity

- Let L/K be a finite abelian extension of number fields. Let K^{ab} be the maximal abelian extension of K.
- Class field theory tells us that there is a unique continuous map called the (global) Artin map

$$\mathbf{A}_{K}^{ imes}
ightarrow \operatorname{Gal}(K^{\operatorname{ab}}/K)$$

given by $s \mapsto [s, K]$, where if $(s) = \prod_p p^{n_p}$ is not divisible by primes that ramify in L, then

$$[s, K]|_L = ((s), L/K) := \prod_{\mathfrak{p}} \sigma_{\mathfrak{p}}^{n_{\mathfrak{p}}}$$

From number theory: Artin reciprocity

- Let L/K be a finite abelian extension of number fields. Let K^{ab} be the maximal abelian extension of K.
- Class field theory tells us that there is a unique continuous map called the (global) Artin map

$$\mathbf{A}_{K}^{ imes}
ightarrow \operatorname{Gal}(K^{\operatorname{ab}}/K)$$

given by $s \mapsto [s, K]$, where if $(s) = \prod_p p^{n_p}$ is not divisible by primes that ramify in L, then

$$[s, K]|_L = ((s), L/K) := \prod_{\mathfrak{p}} \sigma_{\mathfrak{p}}^{n_{\mathfrak{p}}}$$

• The Artin map is surjective with K^{\times} contained in the kernel.

From arithmetic to algebra via analysis

• Let K/\mathbb{Q} be an imaginary quadratic field.

From arithmetic to algebra via analysis

- Let K/\mathbb{Q} be an imaginary quadratic field.
- Let E/\mathbb{Q} be an elliptic curve with CM by the rings of integers $\mathcal{O}_{\mathcal{K}}$.

From arithmetic to algebra via analysis

- Let K/\mathbb{Q} be an imaginary quadratic field.
- Let E/\mathbb{Q} be an elliptic curve with CM by the rings of integers $\mathcal{O}_{\mathcal{K}}$.
- Let $\sigma \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$.

From arithmetic to algebra via analysis

- Let K/\mathbb{Q} be an imaginary quadratic field.
- Let E/\mathbb{Q} be an elliptic curve with CM by the rings of integers $\mathcal{O}_{\mathcal{K}}$.
- Let $\sigma \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$.
- Let $s \in \mathbf{A}_{K}^{\times}$ be an idèle with $[s, K] = \sigma|_{K^{\mathrm{ab}}}$.

イロト 不得 トイヨト イヨト ニヨー

Sac

From arithmetic to algebra via analysis

- Let K/\mathbb{Q} be an imaginary quadratic field.
- Let E/\mathbb{Q} be an elliptic curve with CM by the rings of integers $\mathcal{O}_{\mathcal{K}}$.
- Let $\sigma \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$.
- Let $s \in \mathbf{A}_{K}^{\times}$ be an idèle with $[s, K] = \sigma|_{K^{\mathrm{ab}}}$.
- Let $f : \mathbb{C}/\mathfrak{a} \xrightarrow{\sim} E(\mathbb{C})$ be a complex-analytic isomorphism.

Theorem 6 (The main theorem of CM of elliptic curves)

There exists a unique complex-analytic isomorphism $f': \mathbb{C}/(s)^{-1}\mathfrak{a} \xrightarrow{\sim} E^{\sigma}(\mathbb{C})$ such that the following diagram commutes:

The associated Hecke character

• A Hecke character of a number field K is a continuous map

$$\psi : \mathbf{A}_{K}^{\times} \to \mathbb{C}^{\times}$$
 that satisfies $\chi(L^{\times}) = 1$.

Complex Multiplication 17/31

August 2022

The associated Hecke character

• A Hecke character of a number field K is a continuous map

 $\psi : \mathbf{A}_{K}^{\times} \to \mathbb{C}^{\times}$ that satisfies $\chi(L^{\times}) = 1$.

• Using the Main Theorem, we can define a Hecke character

$$\psi_{E/L}(s) = \alpha_{L/K}(s) \operatorname{Nm}_{L/K}(s^{-1})_{\infty}$$

of L/K, where E/L is an elliptic curve with CM by \mathcal{O}_K , and $\alpha_{L/K}$ is chosen to make following diagram commutes

$$egin{array}{c} {\cal K}/{\mathfrak{a}} & \stackrel{lpha_{L/{\cal K}}({\mathfrak{s}})/{\operatorname{Nm}}_{L/{\cal K}}{\mathfrak{s}}}{\sim} {\cal K}/{\mathfrak{a}} & \ \sim & \downarrow \sim & \downarrow \sim & \cdot \ E^{\operatorname{ab}}(L) & \stackrel{[{\mathfrak{s}},L]}{\longrightarrow} E^{\operatorname{ab}}(L) & \end{array}$$

Complex Multiplication 17/31

August 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The associated Hecke character

• A Hecke character of a number field K is a continuous map

 $\psi : \mathbf{A}_{K}^{\times} \to \mathbb{C}^{\times}$ that satisfies $\chi(L^{\times}) = 1$.

• Using the Main Theorem, we can define a Hecke character

$$\psi_{E/L}(s) = \alpha_{L/K}(s) \operatorname{Nm}_{L/K}(s^{-1})_{\infty}$$

of L/K, where E/L is an elliptic curve with CM by \mathcal{O}_K , and $\alpha_{L/K}$ is chosen to make following diagram commutes

• $\psi_{E/L}$ is unramified at \mathfrak{P} of L iff E has good reduction at \mathfrak{P} .

l

L-series of an elliptic curve

The *L*-series of E/L encodes arithmetic information:

$$L(E/L,s) = \prod_{\mathfrak{P}} L_{\mathfrak{P}}(E/L,q_{\mathfrak{P}}^{-s})^{-1}$$

ranging over primes \mathfrak{P} of L. Each local L-factor is given by

$$L_{\mathfrak{P}}(E/L,T)=1-a_{\mathfrak{P}}T+q_{\mathfrak{P}}T^{2},$$

where $q_{\mathfrak{P}} = \operatorname{Nm}_{L/\mathbb{Q}} \mathfrak{P}$ and $a_{\mathfrak{P}} = q_{\mathfrak{P}} + 1 - \#\widetilde{E}(\kappa_{\mathfrak{P}})$, $\kappa_{\mathfrak{P}}$ is the residue field of L at \mathfrak{P} . In the case when E has bad reduction at \mathfrak{P} , we define

 $L_{\mathfrak{P}}(E/L,T) = \begin{cases} 1-T, & \text{split multiplicative reduction} \\ 1+T, & \text{non-split multiplicative reduction} \\ 1, & \text{additive reduction} \end{cases}$

◆□ > ◆□ > ◆ □ > ● □ >

Hecke *L*-series

• Let $\psi: \mathbf{A}_L^{\times} \to \mathbb{C}^{\times}$ be a Hecke character. Attach to it the *L*-series

$$L(s,\psi) = \prod_{\mathfrak{P}} (1-\psi(\mathfrak{P})q_{\mathfrak{P}}^{-s})^{-1},$$

where the product is taken over all primes \mathfrak{P} of L.

Hecke *L*-series

• Let $\psi: \mathbf{A}_L^\times \to \mathbb{C}^\times$ be a Hecke character. Attach to it the L-series

$$L(s,\psi) = \prod_{\mathfrak{P}} (1-\psi(\mathfrak{P})q_{\mathfrak{P}}^{-s})^{-1},$$

where the product is taken over all primes \mathfrak{P} of L.

• This is the generalization of the Dirichlet L-function

$$L(s,\chi) = \prod_{p} (1-\chi(p)p^{-s})^{-1}$$

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Hecke *L*-series

• Let $\psi: \mathbf{A}_L^\times \to \mathbb{C}^\times$ be a Hecke character. Attach to it the L-series

$$L(s,\psi) = \prod_{\mathfrak{P}} (1-\psi(\mathfrak{P})q_{\mathfrak{P}}^{-s})^{-1},$$

where the product is taken over all primes \mathfrak{P} of L.

• This is the generalization of the Dirichlet L-function

$$L(s,\chi) = \prod_{p} (1-\chi(p)p^{-s})^{-1}$$

- Hecke (and later Tate, in his thesis) proved that $L(s,\psi)$
 - has analytic continuation to the to the entire complex plane, and

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Hecke *L*-series

• Let $\psi: \mathbf{A}_L^\times \to \mathbb{C}^\times$ be a Hecke character. Attach to it the L-series

$$L(s,\psi) = \prod_{\mathfrak{P}} (1-\psi(\mathfrak{P})q_{\mathfrak{P}}^{-s})^{-1},$$

where the product is taken over all primes \mathfrak{P} of L.

• This is the generalization of the Dirichlet L-function

$$L(s,\chi) = \prod_{p} (1-\chi(p)p^{-s})^{-1}$$

- Hecke (and later Tate, in his thesis) proved that $L(s,\psi)$
 - has analytic continuation to the to the entire complex plane, and

Hecke *L*-series

• Let $\psi: \mathbf{A}_L^\times \to \mathbb{C}^\times$ be a Hecke character. Attach to it the L-series

$$L(s,\psi) = \prod_{\mathfrak{P}} (1-\psi(\mathfrak{P})q_{\mathfrak{P}}^{-s})^{-1},$$

where the product is taken over all primes \mathfrak{P} of L.

• This is the generalization of the Dirichlet L-function

$$L(s,\chi) = \prod_{p} (1-\chi(p)p^{-s})^{-1}$$

- Hecke (and later Tate, in his thesis) proved that $L(s,\psi)$
 - has analytic continuation to the to the entire complex plane, and
 - satisfies a functional equation L(s, ψ) = εL(N − s, ψ[∨]) for some ε, N depending on ψ.

Complex Multiplication 20/31

August 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A conjecture on the *L*-series

• The L-series L(E/L, s) of an elliptic curve E/L converges for $\Re s > 3/2$.

Conjecture

The *L*-series L(E/L, s) has an analytic continuation to the entire complex plane and satisfies a functional equation relating L(E/L, 2) and L(E/L, 2-s).

Complex Multiplication 20/31

A conjecture on the *L*-series

• The L-series L(E/L, s) of an elliptic curve E/L converges for $\Re s > 3/2$.

Conjecture

The *L*-series L(E/L, s) has an analytic continuation to the entire complex plane and satisfies a functional equation relating L(E/L, 2) and L(E/L, 2-s).

• For E having CM, Deuring and Weil proved that

$$L(E/L,s) = L(s,\psi_{E/L})L(s,\overline{\psi_{E/L}}),$$

so by Hecke's result the conjecture is resolved.

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

A conjecture on the *L*-series

• The L-series L(E/L, s) of an elliptic curve E/L converges for $\Re s > 3/2$.

Conjecture

The *L*-series L(E/L, s) has an analytic continuation to the entire complex plane and satisfies a functional equation relating L(E/L, 2) and L(E/L, 2-s).

• For E having CM, Deuring and Weil proved that

$$L(E/L,s) = L(s,\psi_{E/L})L(s,\overline{\psi_{E/L}}),$$

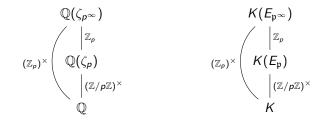
so by Hecke's result the conjecture is resolved.

• Works of Eichler, Shimura, and finally Wiles's modularity theorem resolves the case E/\mathbb{Q} .

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Iwasawa theory of elliptic curves with CM

• In the classical lwasawa theory we consider the infinite cyclotomic tower and study the *p*-adic analogue of Riemann zeta function.



Iwasawa theory of elliptic curves with CM

• In the classical lwasawa theory we consider the infinite cyclotomic tower and study the *p*-adic analogue of Riemann zeta function.

• Substituting \mathbb{Q} by K an imaginary quadratic field, the role of ζ_{p^n} is played by the \mathfrak{p}^n -torsion points on E.

Iwasawa theory of elliptic curves with CM

• In the classical lwasawa theory we consider the infinite cyclotomic tower and study the *p*-adic analogue of Riemann zeta function.

- Substituting \mathbb{Q} by K an imaginary quadratic field, the role of ζ_{p^n} is played by the p^n -torsion points on E.
- The *p*-adic L(E, s) tells us the *p*-part of the Tate-Shafarevich group $\operatorname{III}(E/\mathbb{Q})$, which is helpful to understanding the BSD conjecture.

Outline of the talk

2 CM of elliptic curves

3 Generalization to abelian Varieties

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Facts about abelian varieties

 An abelian variety A/K is a connected projective group scheme over a field K (the K-rational points A(K) forms a group).

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Facts about abelian varieties

- An abelian variety A/K is a connected projective group scheme over a field K (the K-rational points A(K) forms a group).
- Elliptic curves are one-dimensional abelian varieties.

August 2022

Facts about abelian varieties

- An abelian variety A/K is a connected projective group scheme over a field K (the K-rational points A(K) forms a group).
- Elliptic curves are one-dimensional abelian varieties.
- Over C, uniformization holds, but the converse does not! The obstruction is rectified by so-called **polarization**.

August 2022

Facts about abelian varieties

- An abelian variety A/K is a connected projective group scheme over a field K (the K-rational points A(K) forms a group).
- Elliptic curves are one-dimensional abelian varieties.
- Over \mathbb{C} , uniformization holds, but the converse does not! The obstruction is rectified by so-called **polarization**.
- The category of abelian varieties with isogenies is semisimple, and $\operatorname{End}_{\mathbb{Q}}(A) := \operatorname{End}(A) \otimes \mathbb{Q}$ is a semisimple \mathbb{Q} -algebra.

Facts about abelian varieties

- An **abelian variety** A/K is a connected projective group scheme over a field K (the \overline{K} -rational points $A(\overline{K})$ forms a group).
- Elliptic curves are one-dimensional abelian varieties.
- Over C, uniformization holds, but the converse does not! The obstruction is rectified by so-called **polarization**.
- The category of abelian varieties with isogenies is semisimple, and $\operatorname{End}_{\mathbb{Q}}(A) := \operatorname{End}(A) \otimes \mathbb{Q}$ is a semisimple \mathbb{Q} -algebra.
- Let B be a semisimple K-algebra. By Wedderburn-Artin theorem

$$B=\mathcal{M}_{n_i}(D_i).$$

Let K_i be the center of D_i , define the **reduced degree**

$$[B:K]_{\mathrm{red}} := [B_i:K_i]^{1/2}[K_i:K].$$

It is the degree of the maximal étale K-subalgebra of B.

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Abelian variety with CM

Lemma 7

Notation as above, if M is a faithful B-module, then

 $\dim_{\mathcal{K}} M \geq [B:\mathcal{K}]_{\mathrm{red}},$

with equality if and only if B_i are matrix algebras over K_i .

• Fix a uniformization $A \cong \mathbb{C}^g / \Lambda$. Interpret an analytic representation

 $\operatorname{End}_{\mathbb{Q}}(A) \cong \{ M \in \mathcal{M}_g(\mathbb{C}) : M \mathbb{Q} \Lambda \subset \mathbb{Q} \Lambda \}.$

Then $\mathbb{Q}\Lambda$ is a faithful $\operatorname{End}_{\mathbb{Q}}(A)$ -module, so that

 $[\operatorname{End}_{\mathbb{Q}}(A) : \mathbb{Q}]_{\operatorname{red}} \leq \dim_{\mathbb{Q}} \mathbb{Q}\Lambda = 2 \dim A.$

Yunhan Sheng (UChicago)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Abelian variety with CM

Lemma 7

Notation as above, if M is a faithful B-module, then

 $\dim_{\mathcal{K}} M \geq [B:\mathcal{K}]_{\mathrm{red}},$

with equality if and only if B_i are matrix algebras over K_i .

• Fix a uniformization $A \cong \mathbb{C}^g / \Lambda$. Interpret an analytic representation

 $\operatorname{End}_{\mathbb{Q}}(A) \cong \{ M \in \mathcal{M}_g(\mathbb{C}) : M \mathbb{Q} \Lambda \subset \mathbb{Q} \Lambda \}.$

Then $\mathbb{Q}\Lambda$ is a faithful $\operatorname{End}_{\mathbb{Q}}(A)$ -module, so that

 $[\operatorname{End}_{\mathbb{Q}}(A) : \mathbb{Q}]_{\operatorname{red}} \leq \dim_{\mathbb{Q}} \mathbb{Q}\Lambda = 2 \dim A.$

• We say that A/\mathbb{C} has CM if equality holds.

CM-field

A CM-field is an imaginary quadratic extension of a totally real field. Examples: Q(√−D)/Q and Q(ζ_N)/Q(ζ_N + ζ_N).

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

CM-field

- A **CM-field** is an imaginary quadratic extension of a totally real field. Examples: $\mathbb{Q}(\sqrt{-D})/\mathbb{Q}$ and $\mathbb{Q}(\zeta_N)/\mathbb{Q}(\zeta_N + \overline{\zeta_N})$.
- A CM-algebra is a finite product of CM-fields.

イロト 人間ト イヨト イヨト

3

CM-field

- A **CM-field** is an imaginary quadratic extension of a totally real field. Examples: $\mathbb{Q}(\sqrt{-D})/\mathbb{Q}$ and $\mathbb{Q}(\zeta_N)/\mathbb{Q}(\zeta_N + \overline{\zeta_N})$.
- A CM-algebra is a finite product of CM-fields.
- By the lemma and the fact that A is semisimple, A has CM if and only if each of its simple factors has CM.

Theorem 8

An abelian variety A/\mathbb{C} has CM if and only if

- (if A is simple) $\operatorname{End}_{\mathbb{Q}}(A)$ is a CM-field of degree $2 \dim A$ over \mathbb{Q} ;
- (if A is isotypic) End_Q(A) contains a field of degree 2 dim A over Q;
- $\operatorname{End}_{\mathbb{Q}}(A)$ contains an étale \mathbb{Q} -subalgebra of dimension $2 \dim A$.

Moreover, the number field (resp. étale \mathbb{Q} -subalgebra) can be chosen to be a CM-field (resp. CM-algebra) invariant under the Rosati involution induced by a polarization of A.

Review: CM of elliptic curves

• Let us recall the main theorem of CM of elliptic curves.

Review: CM of elliptic curves

- Let us recall the main theorem of CM of elliptic curves.
- Let K/\mathbb{Q} be an imaginary quadratic field.

Review: CM of elliptic curves

- Let us recall the main theorem of CM of elliptic curves.
- Let K/\mathbb{Q} be an imaginary quadratic field.
- Let E/\mathbb{Q} be an elliptic curve with CM by the rings of integers $\mathcal{O}_{\mathcal{K}}$.

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Review: CM of elliptic curves

- Let us recall the main theorem of CM of elliptic curves.
- Let K/\mathbb{Q} be an imaginary quadratic field.
- Let E/\mathbb{Q} be an elliptic curve with CM by the rings of integers $\mathcal{O}_{\mathcal{K}}$.
- Let $\sigma \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$. Let $s \in \mathbf{A}_{K}^{\times}$ be an idèle with $[s, K] = \sigma|_{K^{\operatorname{ab}}}$.

August 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Review: CM of elliptic curves

- Let us recall the main theorem of CM of elliptic curves.
- Let K/\mathbb{Q} be an imaginary quadratic field.
- Let E/\mathbb{Q} be an elliptic curve with CM by the rings of integers $\mathcal{O}_{\mathcal{K}}$.
- Let $\sigma \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$. Let $s \in \mathbf{A}_{K}^{\times}$ be an idèle with $[s, K] = \sigma|_{K^{\operatorname{ab}}}$.
- Let $f : \mathbb{C}/\mathfrak{a} \xrightarrow{\sim} E(\mathbb{C})$ be a complex-analytic isomorphism.

Theorem 9 (The main theorem of CM of elliptic curves)

There exists a unique complex-analytic isomorphism $f': \mathbb{C}/(s)^{-1}\mathfrak{a} \xrightarrow{\sim} E^{\sigma}(\mathbb{C})$ such that the following diagram commutes:

The main theorem of CM of abelian varieties

• Let K be a CM-field of type (K, Φ) .

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨ - のくべ

The main theorem of CM of abelian varieties

• Let K be a CM-field of type (K, Φ) .

• Let (A, ι, C) be a polarized CM abelian variety of type $(K, \Phi, \mathfrak{a}, \tau)$ with respect to an isomorphism $f : \mathbb{C}^g/u(\mathfrak{a}) \xrightarrow{\sim} A$.

Complex Multiplication 27/31

The main theorem of CM of abelian varieties

- Let K be a CM-field of type (K, Φ) .
- Let (A, ι, C) be a polarized CM abelian variety of type (K, Φ, α, τ) with respect to an isomorphism f : C^g/u(α) → A.
- Let $\sigma \in \operatorname{Aut}(\mathbb{C}/K^*)$. Let $s \in \mathbf{A}_K^{\times}$ be an idèle with $[s, K^*] = \sigma|_{(K^*)^{\operatorname{ab}}}$.

Theorem 10 (The main theorem of CM of abelian varieties)

There is a unique isomorphism $\xi' : \mathbb{C}^g/u(\operatorname{Nm}_{\Phi}(s)^{-1}\mathfrak{a}) \xrightarrow{\sim} A^{\sigma}$ such that A^{σ} is of type $(K, \Phi, \operatorname{Nm}_{\Phi}(s)^{-1}\mathfrak{a}, \operatorname{Nm}_{K/\mathbb{Q}}((s))\tau)$ with respect to ξ' , and the following diagram commutes:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A little history

- The classical theory of CM was developed by Weber, Fueter, Hasse and Duering before 1950s.
- The main theorem we gave above was restricted over the reflex field K^* . It was due to Shimura, Taniyama, and Weil in the 1950s. It is sufficient for constructing class fields, though.
- The most general case over $\mathbb Q$ was proved by Langlands, Tate, and Deligne in the 1980s, also called motivic CM theory.

Outline of the talk

1 Number-theoretic background

2 CM of elliptic curves

Generalization to abelian Varieties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Acknowledgements

I'd like to thank my mentor Wei for introducing to me this fascinating topic to learn about. I thank both of my mentors, Wei and Pallav, for hostng weekly meetings with me and answering my endless questions. Finally, I thank Peter for giving me this opportunity.

Thanks for listening.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨ の ()

References I

- [Mil20] J. S. Milne. Complex Multiplication. 2020.
- [Shi71] Goro Shimura. Introduction to Arithmetic Theory of Automorphic Functions. Princeton University Press, 1971.
- [Sil94] Joseph H. Silverman. *Advanced Topics in the Arithmetic of Elliptic Curves.* GTM. Springer, 1994.