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Abstract
These notes are written as a term paper for a reading course the author did with Prof.

Akhil Mathew during Autumn 2022. The focus of this paper is the connection between complex
K-theory and cohomology. The motivation is as follows.

In algebraic geometry, one encounters two important objects: vector bundles and algebraic
cycles. The first one leads to algebraic K-theory, and the second to motivic cohomology. Al-
gebraic K-theory and motivic cohomology are related via two things: Chern characters and
Atiyah-Hirzebruch type spectral sequences. To understand this story (which has been the au-
thor’s ultimate goal!), one should first understand the more elementary topological analogue,
namely how complex K-theory and singular cohomology are related via Chern characters, the
Atiyah-Hirzebruch spectral sequence (AHSS), and the Adams operation.

1 Classification of vector bundles and complex K-theory
We assume the readers are familiar with the basic definitions of vector bundles. Unless otherwise
stated, all vector bundles will be complex vector bundles. We also assume that all topological spaces
are Hausdorff and paracompact. This is not so harsh of a requirement, since all CW complexes are
Hausdorff and paracompact. The reason for this requirement is that in constructing the so-called
universal bundles, we need to to take inductive limits, and the inductive limit of a sequence of
compact spaces is a paracompact space.

We call a vector bundle an n-vector bundle if the fibers have constant dimension n. The first step
to the classification of vector bundles is the following observation:

Proposition. The pullbacks of an n-vector bundle ξ over B along homotopic maps f, g : A → B
are isomorphic bundles over A.

Then we claim that there exists a space Gn(C∞) and an n-vector bundle γn over it, such that any
n-vector bundle over a space B is obtained as a pullback of γn along to a unique-up-to-homotopy
map B → Gn(C

∞). To phrase this functorially:

Theorem. There is a natural equivalence of functors between Vectn(−) and [−, Gn(C∞)].

To construct this mysterious space Gn(C∞), we first start with the Grassmannian Gn(C
q), the

space of n-dimensional subspaces of Cq. We construct a n-vector bundle over Gn(Cq) is as follows.
The total space E ⊂ Gn(C

q)×Cq consists of pairs (Y, v), where v ∈ Y are the actual points of the
n-dimensional subspace Y , and the projection E → Gn(C

q) is simply given by (Y, v) 7→ Y . Take
the colimit of Gn(Cq) and topologize it with weak topology, we get a monstrosity

Gn(C
∞) := lim−→

q

Gn(C
∞) =

⋃
q

Gn(C
q).
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Correspondingly, there is an n-vector bundle over Gn(C∞), and we call this bundle γn. In a sense,
this n-vector bundle classifies all n vector bundles. Hence it is often called the universal n-vector
bundle. Due to the fact that every complex vector bundle can be identified with the associated
bundle to a U(n)-principal bundle, Gn(C∞) is also referred to as the classifying space of U(n), and
denoted BU(n).

The isomorphism classes of all vector bundles over a space X forms an abelian monoid Vect(X).
There is a general universal construction of completing an abelian monoid to an abelian group.
This produces the K-group K(X), where elements of K(X) are formal differences [E] − [F ] of
isomorphism classes of vector bundles E and F over X. Tensor product of vector bundles makes
K(X) into a ring. The assignment K(−) is contravariant: a map f : X → Y induces a map
Vect(Y ) → Vect(X), and thus a ring homomorphism f∗ : K(Y ) → K(X).

There are two crucial facts about complex K-theory. The first is Bott periodicity. Denote by 1 the
trivial bundle over X. If ξ is a vector bundle, P (ξ) is its associated projective bundle (for definition
see Page 4).

Theorem (Bott periodicity). Let ξ be a line bundle over X. Then K(P (ξ⊕ 1)) is a K(X)-algebra
generated by [H] and subjected to the relation

([H]− [1])([ξ][H]− [1]) = 0.

Note that since P (1 ⊕ 1) = X × S2, this gives a weaker statement K(X) ⊗K(S2) ' K(X × S2).
Therefore, K(S2n+1) = 0 and K(S2n) = Z, and thus the name periodicity.

Define higher K-groups Kn(X) = K(ΣnX). Relating to our previous discussion of the classification
of vector bundles, we have that

K(X) ' [X,BU × Z],

where BU is the colimit taken over BU(n). The second crucial fact about K-theory is that the
periodic K-theory functor K∗(−) is a generalized cohomology theory associated to the Ω-spectrum
BU ×Z. The deloopings are precisely given by Bott periodicity. Tensor product induces a pairing
on the spectrum

(BU × Z)× (BU × Z) → BU × Z,

and thus a multiplication on K∗(−). Since K-theory is a generalized cohomology theory, what
is its relationship with the singular cohomology H∗(−), represented by the Eilenberg-Mac Lane
spectrum? This is the question we now go into. The answer is twofold: through Chern characters,
and through Atiyah-Hirzebruch spectral sequence. In fact, the latter degenerates rationally to the
former.

2 Chern characters and Adams operation
We start with the definition of a characteristic class:

Definition. Let R be a ring. A characteristic class c of degree q is a natural assignment ξ → c(ξ)
of each n-vector bundle ξ = (E,B, p) to a cohomology class c(ξ) ∈ Hq(B;R).

The naturality here means that if ξ′ is another n-vector bundle with bundle map f : ξ → ξ′, then
f∗(c(ξ′)) = c(ξ). To put it more categorically, let Vectn(−) : Top → Set be the homotopy invariant
functor which sends a topological space X to the set of of isomorphism classes of n-vector bundles
over X. Then a characteristic class is a natural transformation Vectn(−) ⇒ H∗(−;R).
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Let Λq be the set of all characteristic classes of degree q for n-vector bundles. The addition
c1 + c2 : ξ 7→ c1(ξ) + c2(ξ) ∈ Hq(B;R) makes Λq into an abelian group. Let c1 ∈ Λp and c2 ∈ Λq.
Then multiplication c2 · c2 : ξ 7→ c1(ξ) ^ c2(ξ) ∈ Hp+q(B;R) makes Λ = ⊕q≥0Λq into a graded
ring, with identity the assignment ξ 7→ 1 ∈ H0(B;R). Hence Λq is referred to as the ring of degree
q characteristic classes.

In the classification of vector bundles we see that Vectn(−) is represented by BU(n) = Gn(C
∞).

Therefore characteristic classes are in correspondence with cohomology classes in Hq(BU(n);R).
Explicitly, for each k ∈ Hq(BU(n);R), let k ∈ Λq be the characteristic class that assigns an n-vector
bundle ξ over B to f∗(γn) ∈ Hq(B;R), where f is the map f : ξ → γn to the universal bundle
which is unique up to bundle homotopy. It can be checked that k 7→ k defines a ring isomorphism
H∗(BU(n);R) → Λ. If the coefficient ring R is Z, then

H∗(BU(n);Z) ∼= Z[c1, · · · , cn],

where the ci’s are called Chern classes. For real vector bundles, there is an analogous description
H∗(BO(n);Z/2Z) ∼= (Z/2Z)[ω1, · · · , ωn] where the ωi’s are called Stiefel-Whitney classes.

Without further ado, let us now define Chern classes. From now on we always assume the singular
cohomology is with integral coefficient unless otherwise stated.

Definition. There are characteristic classes ci : ξ 7→ H2i(B;Z) for i ≥ 0 for any n-vector bundle ξ
over B called Chern classes that are uniquely characterized by the following axioms:

(i) c0(ξ) = 1 and ci(ξ) = 0 if i > n;

(ii) (Whitney sum formula) ci(ξ ⊕ δ) =
∑i

k=0 ck(ξ)^ ci−k(δ);

(iii) c1(γ1) = e((γ1)R), the Euler class of the underlying real vector bundle of the universal bundle
γ1 over CP∞.

We first need to define what the Euler class is. For that we consider oriented n-vector bundles.
Recall that an orientation for a real vector space V is an equivalence of ordered bases, where
two bases are equivalent when the transitional matrix between them has positive determinant.
Alternatively, a choice of orientation for V is a choice of generator of the infinite cyclic group
Hn(V, V − {0}). For a real n-vector bundle (E,B, p), an orientation is a function assigning each
fiber F an orientation as a vector space in the compatible sense: for each b0 ∈ B there exists a local
trivialization h : U ×Rn → p−1(U) such that for each b ∈ U the map h|b×Rn preserves orientation.

It is obvious that in each trivialization U of b ∈ B there exists some u ∈ Hn(p−1(U), p−1
0 (U)) such

that for each fiber F in p−1(U) the restriction uF = u|F ∈ Hn(F, F0) is the orientation of F . The
Thom isomorphism theorem below states that such cohomology class u exists globally.

Theorem (Thom). Let (E,B, p) be an oriented n-vector bundle. Then H i(E,E0) = 0 for i < n,
and Hn(E,E0) contains a unique class u such that the restriction u|(F,F0) ∈ Hn(F, F0) is the
orientation generator uF for any fiber F . Furthermore, the correspondence x 7→ x ^ u defines an
isomorphism Hk(E) → Hk+n(E,E0) for each k.

The cohomology class u is referred to as the fundamental cohomology class or Thom class.

Proof. For a detailed exposition see [6]. The rough idea is that to first prove the statement locally
on a trivialization of the bundle. Then argue how two overlapping trivializations fit together via
standard Mayer-Vietoris argument. Finally, an induction argument finishes the proof. The same
technique is used to prove, for instance, the Leray-Hirsch theorem.
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With this result we now define the Euler class, thereby completing the definition of Chern classes.

Definition. Let ξ = (E,B, p) be an oriented n-vector bundle with fundamental cohomology class
u. Let i∗ : Hn(E,E0) → Hn(E) be the map induced by the natural inclusion i : (E,∅) ⊂ (E,E0).
The Euler class for ξ is e(ξ) := p∗i∗(u).

The Euler class is natural up to a sign: if ξ → ξ′ is orientation preserving (resp. reversing), then
e(ξ) = f∗e(ξ′) (resp. e(ξ) = −f∗e(ξ′)). One also checks that fefw. If ξ is a complex vector bundle,
then the underlying real vector bundle ξR has a canonical orientation. We write e(ξR) for the
associated Euler class of ξ.

The question remains how to construct Chern classes. We need the notion of projective bundle.

Definition. Let ξ = (E,B, p) be a n-vector bundle. Let E0 ⊂ E be the subspace with the zero
section removed. Let P (ξ) be the quotient space of E0 obtained by identifying points in a fiber
that lie in the same one dimensional linear subspace. Let q : P (ξ) → B be the map that factorizes
p|E0 : E0 → B. The projective bundle associated to ξ is the vector bundle (P (ξ), B, q).

If we pullback ξ along q : P (ξ) → B, then we obtain a bundle λξ over P (ξ). It can be checked that
λξ is actually a line bundle. Consider the map f : λξ → γ1 to the universal bundle:

λξ E

γ1

P (ξ) B

CP∞

q

f

p

.

Denote by aξ the pullback of the Euler class e((γ1)R) along f , which is well-defined since f is
unique up to homotopy. The following proposition is a consequence of the Leray-Hirsch Theorem,
which gives a fiberwise criteria for the cohomology of the total space to be a free module over the
cohomology of the base space.

Proposition. The classes 1, aξ, · · · , an−1
ξ generate H∗(P (ξ)) as an H∗(B)-module.

Thus, we can find cohomology classes ci(ξ) ∈ H2i(B) with c0(ξ) = 1, ci(ξ) = 0 for i > n, and

anξ =
n∑
j=1

(−1)j+1cj(ξ)a
n−j
ξ .

It can be checked (not easily!) that the classes ci constructed above are the unique ones that satisfy
the axioms of Chern classes. The uniqueness part is a consequence of the splitting principle.

Proposition (The splitting principle). Given an n-vector bundle ξ : E → B, there exists an
associated bundle f : Fl(ξ) → B called the Flag bundle of ξ such that

(i) f∗ : H∗(B) → H∗(Fl(ξ)) is injective;

(ii) f∗(ξ) splits into a Whitney sum of line bundles.
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With Chern classes at our disposal, we can finally define the object at central of our concern: the
Chern character. Chern character nicely relates complex K-theory to singular cohomology, at least
if one ignores torsion. Namely, Chern character induces a ring isomorphism

ch : K∗(X)⊗Q
∼=−→ H∗(X;Q).

The construction of Chern characters will be quite combinatorial in nature. We also acquire Adams
operation along the way, so we kill two birds with one stone!

Likewise, we first define Adams operation axiomatically before constructing them explicitly.

Definition. Let X be a compact Hausdorff space. For each k ≥ 0 there exists a unique ring
homomorphism ψk : K(X) → K(X) called the k-th Adams operation that satisfy:

(i) (naturality) ψkf∗ = f∗ψk for any f : X → Y ;

(ii) ψk(L) = Lk if L is an line bundle.

Adams operation is an example of K-theory operations. To construct them, consider the polynomial
Qk(t1, · · · , tk) = tk1 + · · ·+ tkk which is invariant under permutations of the variables.

Theorem (Fundamental theorem of symmetric functions). Every symmetric function S(t1, · · · , tk)
can be written uniquely as a polynomial in the elementary symmetric polynomials

σ1 = t1 + · · ·+ tk, σ2 =
∑

1≤i<j≤k
titj , · · · , σk = t1t2 · · · tk.

Therefore, Qk(t1, · · · , tk) can be expressed as a polynomial in the elementary symmetric polynomials
in the variables t1, · · · , tk. The expressions sk(σ1, · · · , σk) = Qk(t1, · · · , tk) are called Newton
polynomials. For example,

s1 = σ1, s2 = σ21 − 2σ2, σ3 = σ31 − 3σ1σ2 + 3σ3,

and so on. Using λk(E) to denote the exterior power ∧kE, we define ψk(E) = sk(λ
1(E), · · · , λk(E)).

One verifies that it satisfies the axioms in the definition.

Remark. More formally, Adams operation can be defined using the λ-ring structure on K-groups.
The λ-ring structure formalizes exterior power. This framework has the advantage that K-theory
operations defined thus are readily extended to the algebraic K-theory context. But the present
definition involves less definition and is rather elementary.

For an n-vector bundle ξ, let us write sk(ξ) for sk(c1(ξ), · · · , cn(ξ)). A formal computation shows
that for n-vector bundle δ over the same base space,

sk(ξ ⊕ δ) = sk(ξ) + sk(δ), and sk(ξ ⊗ δ) =
k∑
i=0

(
k

i

)
si(ξ)sk−i(δ).

Note that we define sk = 0 for k > n.

Definition. Let ξ be an n-vector bundle over B. We define the class chk(ξ) = sk(ξ)/k! ∈ H2k(B)
for k ≥ 1 and ch0(ξ) = dim(ξ). The sum ch(ξ) =

∑
k≥0 chk(ξ) is called the Chern character of ξ.
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If L is a line bundle, then ch(L) = exp(c1(L)). Again, a formal computation gives formula

ch(ξ ⊕ δ) = ch(ξ) + ch(δ), and ch(ξ ⊗ δ) = ch(ξ)^ ch(δ).

Therefore, Chern character defines a ring homomorphism ch : K∗(B) → H∗(B). In fact, it is an
isomorphism if torsion is ignored:

Theorem (Karoubi). For compact space B, Chern characters induces a ring isomorphism

ch : K(B)⊗Q −→
⊕
i≥0

Ȟ2i(B;Q),

where Ȟ denotes Čech cohomology.

The Chern character is also an intertwiner of Adams operations ψk, in the sense that there is a
commutative diagram

K(B)
⊕

i≥0H
2i(B;Q)

K(B)
⊕

i≥0H
2i(B;Q)

ch

ch

ψk ψk
H

,

where ψkH is given by ψkH(x) = krx for x ∈ H2r(B;Q), the eigenvalue of ψk on cohomology.

3 Atiyah-Hirzebruch spectral sequence
We first state the (cohomological) Atiyah-Hirzebruch spectral sequence (AHSS), before we sketch
its construction. In full generality, AHSS is a spectral sequence that computes a generalized coho-
mology theory E∗ using ordinary cohomology H∗ with coefficients in E∗(pt).

Theorem (AHSS). Let X be a finite CW complex. Let E∗ be a generalized cohomology theory.
Then there is a spectral sequence with

Ep,q2 := Hp(X;Eq(pt)) =⇒ Ep+q(X)

Every spectral sequence arises from a filtration, and AHSS is no exception. A natural filtration of
X given by its CW structure is

pt = X−1 ⊂ X0 ⊂ · · · ⊂ Xn = X.

Let Ẽ∗ be the reduced version of E∗. Setting FiẼm(X) = ker{Ẽm(X) → Ẽm(Xi)} gives a filtration

0 = FnẼ
m(X) ⊂ · · · ⊂ F−1Ẽ

m(X) = Ẽm(X)

of Ẽm induced by the CW structure on X. Each entry Ep,qr converges to

Ep,q∞ = Fp−1Ẽ
p+q(X)/FpẼ

p+q(X).
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Remark. According to Adams [2], AHSS was probably first invented by Whitehead. It was first
published by Atiyah and Hirzebruch in 1961 with K-theory K∗ in place of E∗. Reversing the arrows
one gets a homological AHSS. As pointed out in their original paper, AHSS can be generalized to
fiber bundles F ↪→ X → B in the form

Ep,q2 (X) = Hp(B;Eq(F )) =⇒ Ep+q(X)

that generalizes also the Serre spectral sequence. In algebraic K-theory, there is a similar spectral
sequence that computes algebraic K-groups using motivic cohomology. See Grayson [?].

We provide a sketch of the construction of AHSS. Arising from the CW filtration of a space X,
each pair (Xp, Xp−1) gives a long exact sequence

· · · → Ẽn(Xp−1)
i∗−→ Ẽn(Xp)

α−→ En(Xp, Xp−1)
j∗−→ Ẽn−1(Xp−1) → · · ·

which can be further made into an exact couple

Ẽ∗(Xp−1) Ẽ∗(Xp)

E∗(Xp, Xp−1)

i∗

j∗α
.

The general theory of exact couples allows us to deduce higher pages of the spectral sequence
and eventually prove the convergence. The detailed proof is somewhat technical, and we refer to
Fomenko-Fuchs [3] for an account.

Remark. Let E be the CW spectrum representing E∗. Then AHSS can be rephrased as

Ep,q2 = Hp(X;πq(E)) =⇒ Ep+q(X).

An alternative construction can be given by filtering the Postnikov tower of the spectrum E, where
each layer of the tower is has the shifted Eilenberg-Mac Lane spectrum ΣnHπn(E) as homotopy
fiber. Smashing with X, the Postnikov system gives a long exact sequence of homotopy groups
that assembles to an exact couples.

Complex K-theory is a generalized cohomology theory, and therefore AHSS applies. Due to Bott
periodicity, all odd rows in the K-theory AHSS are zero since Ki(pt) = 0 for i odd. Consequently,
differentials di are also zero for i even, and thus all information is contained in a single row of the
original spectral sequence.

Corollary (AHSS for Complex K-theory). Let X be a finite CW complex. Then there is a spectral
sequence with

Ep2 = Hp(X;Z) =⇒ Kp(X).

The differential dpr : Epr → Ep+rr is zero if r is even, and each Epr converges to

Ep∞ =
ker{Kp(X) → Kp(Xp−2)}
ker{Kp(X) → Kp(Xp)}

.

Let us now compute some honest-to-god examples using AHSS.
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Example (K-theory of CPn). The E2 page of the spectral sequence looks like[
0 1 2 3 · · · 2n 2n+ 1 2n+ 2 · · ·
Z 0 Z 0 · · · Z 0 0 · · ·

]
All differentials dpr : Z → Z are zero since r is even. Thus the E2 = E∞. Since Z is projective, there
are no extension problems. We conclude that K0(CPn) = Zn+1 and K1(CPn) = 0. Note that it is
possible to do this computation by induction on n without using spectral sequence. However, the
present computation is so much simpler.

Can we further deduce the ring structure of K∗(CPn)? The idea is that we know the ring structure
of H∗(CPn;Z), and Chern characters give us a path from H∗ to K∗.

Proposition. Let ζ be the tautological bundle OP1(−1) over CP1, i.e., the Hopf bundle over S2.
Let ξ be the line bundle over CPn obtained by pullback of ζ. Let 1 be the trivial line bundle over
CPn. Let γ = ξ − 1. Then as a ring,

K∗(CPn) = Z[γ]/γn+1.

Proof. Since ξ is a line bundle, ch(γ) = ch(ξ − 1) = ex − 1, where x = c1(γ). We have

ch(γk) = ch(γ)k = (ex − 1)k = (1 + x+ x2/2 + · · · )k = xk + kxk+1/2 + · · ·

for 1 ≤ k ≤ n and ch(γk) = 0 for k > n. By the ring isomorphism induced by Chern character,
1, γ, · · · , γn are linearly independent in K∗(CPn) and generates K∗(CPn) over Q. It suffices to
show that they generate K∗(CPn) over Z. We argue this by induction on n. Obviously the case
n = 1 holds. Now suppose it also holds for CPn−1. Then for

α = a0 + a1γ + · · ·+ anγ
n ∈ K∗(CPn),

restriction to CPn−1 shows that a0, · · · , an−1 ∈ Z. To show that an ∈ Z, consider the portion of
the long exact sequence in K-groups

· · · K̃(S2n) = K(CPn,CPn−1) K(CPn) K(CPn−1) · · ·j∗ i∗ .

Exactness at K(CPn) implies anγn ∈ ker i∗ = Imj∗. But the Chern character on K̃(S2n) has image
Z, so it must be the case that an ∈ Z.

Example (K-theory of RP2 × RP4). This is a trickier example. For product spaces, we cite a
Künneth formula result from Atiyah [1], which says that for finite CW complexes X and Y , there
is a Z/2Z-graded exact sequence

0 K∗(X)⊗K∗(Y ) K∗(X × Y ) Tor(K∗(X),K∗(Y )) 0
βα ,

where degα = 0 and deg β = 1. It is worth mentioning that this fails for real K-theory. Now to
be able to apply this to our present case, we need to compute the K-theory of RP2 and RP4. For
RP4, the E2 page looks as follows[

0 1 2 3 4 5 6 · · ·
Z 0 Z/2Z 0 Z/2Z 0 0 · · ·

]
.
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Immediately we know that K1(RP4) = 0. For K0(RP4), it is not obvious how the successive
quotients Z, Z/2Z, and Z/2Z fit together. It turns out that K0(RP4) = Z ⊕ Z/4Z. Similarly, it
can be shown that K1(RP2) = 0 and K0(RP2) = Z ⊕ Z/2Z. Now the Künneth formula applies,
and we get

0

K0(RP2)⊗K0(RP4)⊕K1(RP2)⊗K1(RP 4)

K0(RP2 ×RP4)

Tor(K1(RP2),K0(RP4))⊕ Tor(K0(RP2),K1(RP4))

0

In a spectral sequence, it is often quite difficult to determine the differentials explicitly. Let us
illustrate the following nontrivial observation regarding K-theory AHSS:

Proposition. The first possibly nonzero differential

d3 : H
n(X;Z) → Hn+3(X;Z)

on the E3 page is given by S̃q
3
, where S̃q recovers the Steenrod square Sq3 after reduction mod 2.

Proof. Since K1(pt) = 0, all differentials d2 on the E2 page vanishes for dimensional reasons. Hence
the first possibly nonzero differential is d3, going from En2 to En+3

2 . We claim that d3 is a stable
cohomology operation.

Since cohomology operations θ : Hn(−, G) → Hm(−, G′) are in bijective correspondence with
[K(G,n),K(G′,m)], we compute that

[K(Z, n),K(Z, n+ 3)] ∼= Hn+3(K(Z, n);Z) ∼= Z/2Z,

where the cohomology of Eilenberg-Mac Lane space can be computed using the Serre spectral
sequence. This implies that there exists a unique nonzero stable integral cohomology operation
that raises degree by 3. One construction of such operation is given by

S̃q
3
: Hn(X;Z) Hn(X;Z/2Z) Hn+2(X;Z/2Z) Hn+3(X;Z)α Sq2 β

,

where α is reduction mod 2 and β is the Bockstein homomorphism. To see that d3 = S̃q
3
, it suffices

to demonstrate a space X for which there exists a nonzero d3. Take X = RP2 × RP4 as in the
previous example. Then the map

d33 : Z/2Z
∼= H3(X;Z) → H6(X;Z) ∼= Z/2Z

is an isomorphism. This concludes the proof.
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