2 Brownian motion

2.1 Lévy's construction of BM

Consider the 1-d case, let B_t be the position (of a particle) at time t.

- (i) (start at origin) $B_0 = 0$, for convenience purposes;
- (ii) (independent increment) $B_t B_s$ is independent of the σ -algebra generated by $\{B_r : r \leq s\}$, for s < t;
- (iii) (identically distributed increments) $B_t B_s$ has the same distribution as $B_{t-s} B_0$, for s < t.
- (iv) (continuity w.p.1) the function $t \mapsto B_t$ is continuous w.p.1

A process satisfying (i)-(iii) is a **Lévy process**. For instance, a Poisson process is a Lévy process but does not satisfy (iv)

Proposition 2.1. If a process satisfies (i)-(iv), then there exists some $\mu \in \mathbb{R}$ and $\sigma^2 \geq 0$ s.t. $B_t - B_s \sim N(\mu(t-s), \sigma^2(t-s)).$

A Brownian motion (or Wiener Process) with drift μ and variance parameter σ^2 starting at the origin is a stochastic process (a collection of random variables indexed by time t) $\{B_t : t \ge 0\}$ satisfying (i), (ii), (iv), and $B_t - B_s \sim N(\mu(t-s), \sigma^2(t-s))$ for s < t.

Proposition 2.2. If B_t is a standard Brownian motion, then $Y_t = \sigma B_t + t\mu$ is a Brownian motion with drift μ and variance parameter σ^2 .

Does Brownian motion exist? We give a concrete construction.

Lemma 2.3. Let X and Y be independent normal variables with zero mean and σ^2 variance, then X + Y and X - Y are independent normal variables with zero mean and $2\sigma^2$ variance.

Construction. By Proposition 1.2, it suffices to construct a standard BM. It also suffices to consider only the interval [0, 1] by definition.

Consider the dyadic integers $D_n = \{j2^{-n} : j = 0, 1, \dots, 2^n\}$ and $D = \bigcup_{n \ge 0} D_n$. We first construct B_t for $t \in D$ and prove that it is uniformly continuous in t w.p.1. Since uniformly continuous functions defined on a dense set has a unique extension, we simply define $B_t = \lim_{n \to \infty} B_{t_n}$ for $t_n \to t$ and $t_n \in D$.

Let $\{N_q : q \in D\}$ be a collection of independent standard normal random variables, then we define

$$\begin{cases} B_1 = N_1 \\ B_{1/2} = B_1/2 + N_{1/2}/2 \\ B_{1/4} = B_{1/2}/2 + N_{1/4}/2^{3/2} \\ B_{3/4} = 1 - B_{1/4} \\ \cdots \\ B_d = B_{d+1/2^n}/2 + N_d/2^{(n+1)/2} \text{ for } d \in D_n \setminus D_{n-1} \end{cases}$$

By Lemma 1.3, $\{B_{1/2^n}, B_{2/2^n} - B_{1/2^n}, \dots, B_1 - B_{2^n-1/2^n}\}$ are independent $N(0, 1/2^n)$ variables. We are left to show that $q \mapsto B_1$ is uniformly continuous w.p.1. It suffices to show that w.p.1, for any $\alpha < 1/2$ and

$$K_n = \sup\{|B_q - B_s| : q, s \in D \text{ and } |q - s| \le 1/2^n\},\$$

 $\lim_{n\to\infty} 2^{\alpha n} K_n = 0$ (in particular $K_n \to 0$). Let

$$Y(j,n) = \sup\{ |B_1 - B_{(j-1)/2^n}| : q \in D \cap [(j-1)/2^n, j/2^n] \}$$

and $J_n = \max\{Y(j,n) : j = 1, \dots, 2^n\}$, then $J_n \leq 3K_n$, and it suffices to substitute K_n for J_n . Observe that $Y(1,n), \dots, Y(2^n,n)$ are i.i.d., and Y(1,n) has the same distribution as $Y(1,0)/2^{n/2}$ (the reason for $2^{n/2}$ instead of 2^n is because while the variance is halved, the distribution is scaled by a factor of $\sqrt{2}$). Hence,

$$\mathbb{P}\{J_n \ge \epsilon_n\} = \mathbb{P}\{\max Y(j,n) \ge \epsilon_n\}$$
$$\leq \sum_{j=1}^{2^n} \mathbb{P}\{Y(j,n) \ge \epsilon_n\}$$
$$= 2^n \mathbb{P}\{Y(1,n) \ge \epsilon_n\}$$
$$= 2^n \mathbb{P}\{Y(1,0) \ge 2^{n/2}\epsilon_n\}$$

By Borel-Cantelli lemma, if we can find ϵ_n such that $\sum_{n\geq 1} \mathbb{P}\{J_n \geq \epsilon_n\} < \infty$, then $J_n \leq \epsilon_n$ for large enough n. We need a lemma:

Lemma 2.4 (reflection principle (for dyadics)). For any a > 0, $\mathbb{P}\{Y(1,0) > a\} \le 4\mathbb{P}\{B_1 \ge a\}$.

Proof. Since $\mathbb{P}\{Y(1,0) > a\} \leq 2\mathbb{P}\{\sup_{q \in D} B_q \geq a\}$, it suffices to show that $\mathbb{P}\{\max_{j=1,\dots,2^n} B_{j/2^n} > a\} \leq 2\mathbb{P}\{B_1 \geq a\}$ for any n. Fix n and let

$$A_j = \{B_{j/2^n} > a \text{ and } B_{i/2^n} \le a \text{ for } i = 1, \cdots, j-1\}$$

be the first time that $B_{j/2^n}$ is larger than a, then $\{\max_{j=1,\dots,2^n} B_{j/2^n} > a\} = \bigsqcup_{k=1}^{2^n} A_k$. Also observe that $\mathbb{P}(B_1 > a | A_k) \ge 1/2$. Hence

$$\mathbb{P}\{\max_{j=1,\cdots,2^n} B_{j/2^n} > a\}/2 = \sum_{k=1}^{2^n} \mathbb{P}(A_k)/2 \le \sum_{k=1}^{2^n} \mathbb{P}\{B_1 > a; A_k\} = \mathbb{P}\{B_1 > a\}.$$

For large enough a, we have the following estimate:

$$\mathbb{P}\{Y(1,0) > a\} \le 4\mathbb{P}\{B_1 \ge a\} = 4\int_a^\infty e^{-x^2/2} dx / \sqrt{2\pi} \le 4\int_a^\infty e^{-xa/2} dx / \sqrt{2\pi} \le Ce^{-a^2/2} / a \le e^{-a^2/2} dx = e^{-a^2/2} / a \le e^{-a^2/2$$

where C is some constant. Hence we have

$$\mathbb{P}\{J_n \ge \epsilon_n 2^{-n/2}\} = 2^n \mathbb{P}\{Y(1,0) \ge \epsilon_n\} \le 2^n e^{-\epsilon_n^2/2} = e^{n(\log 2 - \beta^2/2)}$$

if we choose $\epsilon_n = \beta \sqrt{n}$. Hence if we choose $\beta^2 > 2 \log 2$, then $\sum_{n \ge 1} \mathbb{P}\{J_n \ge \beta \sqrt{n}2^{-n/2}\} < \infty$ as desired, and by Borel-Cantelli lemma $J_n \le \beta \sqrt{n}2^{-n/2}$. Hence $\lim_{n \to \infty} 2^{\alpha n} J_n = 0$ for $\alpha < 1/2$.

Finally, one can check that $B_t = \lim_{n \to \infty} B_{t_n}$ for $t_n \to t$ and $t_n \in D$ does define a Brownian motion.

Remark. We need out probability space $(\Omega, \mathcal{F}, \mathbb{P})$ to be large enough to have a countable collection of independent standard normal random variables. Luckily, [0, 1] with Borel σ -field and Lebesgue measure suffices (HW1).

2.2 Properties of BM

Proposition 2.5. W.p.1, Brownian motion $\{B_t\}_{0 \le t \le 1}$ is not differentiable at t for all $t \in [0,1]$.

Proof. Suppose event $E_M = \{\exists t \in [0, 1] \text{ such that } |B'_t| \leq M\}$ holds, then by continuity there exists ϵ s.t. $|s - t| < \epsilon$ implies $|B_t - B_s| < 2M\epsilon$. Then if $|s - t|, |s' - t| < \epsilon$, then $|B_s - B_{s'}| \leq 4M\epsilon$. For large enough n, this means that there exists $k \leq n$ s.t.

$$A_{M,n} \begin{cases} \left| B_{(k+1)/n} - B_{k/n} \right| \le 4M/n \\ \left| B_{(k+2)/n} - B_{(k+1)/n} \right| \le 4M/n \\ \left| B_{(k+3)/n} - B_{(k+2)/n} \right| \le 4M/n \end{cases}$$

To show that the countable union $\mathbb{P}(\bigcup_{M\geq 1}E_M) = 0$, it suffices to show that $\mathbb{P}(E_M) = 0$. Observe that $\mathbb{P}(E_M) \leq \mathbb{P}\{\exists k \leq n : A_{M,n}\}$, so it suffices to show that $\lim_{n\to\infty} \mathbb{P}(A_{M,n}) = 0$. Exactly,

$$\mathbb{P}(A_{M,n}) = \mathbb{P}\left\{\min_{0 \le k \le n-1} \left[\max\left\{ \begin{aligned} |B_{(k+1)/n} - B_{k/n}|, \\ |B_{(k+2)/n} - B_{(k+1)/n}|, \\ |B_{(k+3)/n} - B_{(k+2)/n}| \end{aligned}\right] \right\}$$

$$\leq \sum_{k=0}^{n-1} \mathbb{P}\left\{\max\left\{ \begin{aligned} |B_{(k+1)/n} - B_{k/n}|, \\ |B_{(k+2)/n} - B_{(k+1)/n}|, \\ |B_{(k+2)/n} - B_{(k+2)/n}| \end{aligned}\right\}$$

$$= n\mathbb{P}\left\{\max\{|B_{1/n}|, |B_{2/n} - B_{1/n}|, |B_{3/n} - B_{2/n}|\} \le 4M/n\right\}$$

$$= n[\mathbb{P}\{|B_{1/n} \le 4M/n|\}]^{3}$$

$$= n[\mathbb{P}\{|\sqrt{n}B_{1/n} \le 4M/\sqrt{n}|\}]^{3}$$

$$= n\left[\mathbb{P}\{|\sqrt{n}B_{1/n} \le 4M/\sqrt{n}|\}\right]^{3}$$

as $n \to \infty$.

Remark. Proposition 1.5 is stronger than: for any $t \in [0, 1]$, B_t is not differentiable at t w.p.1.

The **natural filtration** for Brownian motion is $\mathcal{F}_t = \sigma\{B_s : s \leq t\}$. We say a process B_t is adapted to a filtration $\{\mathcal{F}_t : t \geq 0\}$ if for B_t is \mathcal{F}_t -measurable for each t. Recall that a **martingale** w.r.t. \mathcal{F}_t is an \mathcal{F}_t -adapted process such that $\mathbf{E}(|M_t|) < \infty$ for any t and $\mathbf{E}(M_t|\mathcal{F}_s) = M_s$ for any s < t. A martingale is continuous (not merely continuous-time!) if $t \mapsto M_t$ is a continuous function w.p.1. Observe that the *standard* Brownian motion is a continuous martingale:

$$\mathbf{E}(B_t|\mathcal{F}_s) = \mathbf{E}(B_s + (B_t - B_s)|\mathcal{F}_s) = \mathbf{E}(B_s|\mathcal{F}_s) + \mathbf{E}((B_t - B_s)|\mathcal{F}_s) = B_s + \mathbf{E}(B_t - B_s) = B_s.$$

A random variables $T : \Omega \to [0, \infty]$ is a stopping time w.r.t. $\{\mathcal{F}_t\}$ if $\{T \leq t\} \in \mathcal{F}_t$ for all $t \geq 0$. Also define $\mathcal{F}_T = \sigma\{A : A \cap \{T \leq t\} \in \mathcal{F}_t$ for all $t\}$.

Proposition 2.6 (reflection principle). Let B_t be a Brownian motion with drift $\mu = 0$, then for any a > 0, $\mathbb{P}\{\max_{0 \le s \le t} B_s \ge a\} = 2\mathbb{P}\{B_t \ge a\}$.

Proof. Let $T_a = \min\{s : B_s \ge a\} = \min\{s : B_s = a\}$, then $\mathbb{P}\{\max_{0 \ge s \ge t} B_s \ge a\} = \mathbb{P}\{T_a \le t\} = \mathbb{P}\{T_a < t\}$. Also $\mathbb{P}\{B_t \ge a | t > T_a\} = 1/2$, hence

$$\mathbb{P}\{B_t \ge a\} = \mathbb{P}\{T_a < t\} \mathbb{P}\{B_t \ge a | T_a < t\} = \mathbb{P}\{T_a < t\}/2.$$

Proposition 2.7 (weak Markov property). Let B_t be a Brownian motion and $Y_s = B_{s+t} - B_t$, then $\{Y_s : s \ge 0\}$ is a Brownian motion with the same μ and σ^2 as B_t , and is independent of $\mathcal{F}_t = \sigma\{B_s : s \ge t\}$.

Proposition 2.8 (strong Markov property). Let B_t be a $BM(\mu, \sigma^2)$ and τ a stopping time w.r.t the filtration $\{\sigma(B_t)\}$. Suppose that $\mathbb{P}\{\tau < \infty\} = 1$. Then $Y_t = B_{t+\tau} - B_{\tau}$ is a $BM(\mu, \sigma^2)$ independent of $\sigma\{B_t : t \in [0, \tau]\}$.

Proposition 2.9. Let B_t be a Brownian motion and T be a stopping time all w.r.t. $\{\mathcal{F}_t\}$. Suppose that $\mathbb{P}\{T \leq \infty\} = 1$. Let $Y_t = B_{t+T} - B_T$ for $0 \leq t < \infty$. Then Y_t is a Brownian motion with the same μ and σ^2 , and is independent of \mathcal{F}_t .

Example. We wish to find $q(r, s) = \mathbb{P}\{B_t = 0 \text{ for some } t \in [r, s]\}$ where B_t is a standard Brownian motion.

Lemma 2.10. Let A_1, A_2, \cdots be events and $\mathcal{F}_n = \sigma\{A_1, \cdots, A_n\}$. Suppose that there exists $b_n > 0$ such that $\sum_{n>1} b_n = \infty$ and $\mathbb{P}(A_{n+1}|\mathcal{F}_n) \ge b_n$ for any n. Then A_n occurs infinitely often.

Remark. This lemma generalizes the Borel-Cantelli lemma: if A_1, A_2, \cdots are independent events and $\sum_{n>1} \mathbb{P}(A_n) = \infty$ then A_n occurs infinitely often.

Proposition 2.11 (law of iterated logarithm). Let B_t be a standard BM. Then w.p.1,

$$\limsup_{t \to \infty} B_t / \sqrt{2t \log \log t} = 1.$$

Proof. We first show that $\limsup_{t\to\infty} B_t/\sqrt{t\log\log t} \le \sqrt{2}$ w.p.1. It suffices to show that for any $\epsilon > 0$ w.p.1 for all t sufficiently large, $B_t \le \sqrt{2(1+\epsilon)t\log\log t}$. We use a trick called geometric scaling. Let $\rho > 1$ and $A_n^{\epsilon,\rho} = \{B_t \ge \sqrt{2(1+\epsilon)t\log\log t} \text{ for some } \rho^{n-1} \le t \le \rho^n\}$. By Borel-Cantelli lemma, it suffices to show that for any $\epsilon > 0$ there exists $\rho > 1$ such that $\sum_{n\ge 1} \mathbb{P}(A_n^{\epsilon,\rho}) < \infty$. By the reflection principle,

$$\mathbb{P}(A_n^{\epsilon,\rho}) \leq \mathbb{P}\left\{\sup_{0 \leq t \leq \rho^n} B_t \geq \sqrt{2(1+\epsilon)\rho^{n-1}\log\log\rho^{n-1}}\right\}$$
$$\leq 2\mathbb{P}\left\{B_{\rho^n} \geq \sqrt{2(1+\epsilon)\rho^{n-1}\log\log\rho^{n-1}}\right\}$$
$$= 2\mathbb{P}\left\{B_{\rho^n}/\sqrt{\rho^n} \geq \sqrt{2(1+\epsilon)(\log(n-1)+\log\log\rho)/\rho}\right\} = C_{\rho}(n-1)^{-(1+\epsilon)/\rho}$$

for some constant C_{ρ} depending on ρ . It suffices to take ρ so that $(1+\epsilon)/\rho > 1$ to make it summable.

For the other side of the inequality, we will show that for any $\epsilon > 0$ there exists $\rho > 1$ such that $\limsup_{n\to\infty} B_{q^n}/\sqrt{2(1-\epsilon)\rho^n \log\log\rho^n} \ge 1$ w.p.1. Let $A_n = \{|B_{q^n}| \ge \sqrt{2(1-\epsilon)\rho^n \log\log\rho^n}\}$. Since $\mathbb{P}(A_n|\mathcal{F}_{n-1}) \ge \mathbb{P}\{B_{\rho^n} - B_{\rho^{n-1}} \ge \sqrt{2(1-\epsilon)\rho^n \log\log\rho^n}\}/2 = \mathbb{P}(\tilde{A}_n)/2$, where $\mathcal{F}_{n-1} = \sigma\{A_1, \dots, A_{n-1}\}$, by the previous lemma it suffices to show that $\sum_{n\ge 1} \mathbb{P}(\tilde{A}_n) = \infty$. Observe that

$$\mathbb{P}(\tilde{A}_n) = \mathbb{P}\left\{ (B_{\rho^n} - B_{\rho^{n-1}}) / \sqrt{\rho^n - \rho^{n-1}} \ge \sqrt{2(1-\epsilon)\rho(\log n + \log \log \rho)/(\rho - 1)} \right\}$$
$$\ge C_{\epsilon,\rho} \exp\{-(1-\epsilon)\rho(\log n + \log \log \rho)/(\rho - 1)\} / \sqrt{2(1-\epsilon)\rho(\log n + \log \log \rho)/(\rho - 1)}$$
$$\ge C'_{\epsilon,\rho} n^{-(1-\epsilon)\rho/(\rho - 1)} / \sqrt{\log n}.$$

Again, take ρ_{ϵ} large enough so that $(1 - \epsilon)\rho/(\rho - 1) < 1$ to make unsummable.

Remark. The common strategy in proving these statements is to use Borel-Cantelli lemma first. We often need some scaling and to investigate the difference of Brownian paths $(B_{\rho^n} - B_{\rho^{n-1}})$ Then to bound the probability of individual events, use tools like reflection principle and take integration of the Gaussian variable.

Let B_t be a standard BM, the **zero set** of it is $Z_t = \{s \in [0, t] : B_s = 0\}$. We write $Z = Z_{\infty}$. A point $s \in Z_t$ is **right-isolated** if there exists $\epsilon > 0$ such that $r \notin Z$ for $r \in (s, s + \epsilon)$. A point in \mathbb{Z}_t is **isolated** if it is both left- and right-isolated.

Proposition 2.12. We make the following observations:

(*i*) $0 \in Z_t$;

- (ii) Z_t is closed for any t;
- (*iii*) 0 is not right isolated;
- (iv) Z is unbounded;
- (v) Z has no isolated points.

Proof. (i)-(iii) is immediate. To prove (iv), we use intermediate value theorem together with, say, the law of iterated logarithm. Alternatively we can use the inverse

For (v),

2.3 Quadratic variation of BM

2.4 Dimension of BM

2.5 BM in \mathbb{R}^d

Definition. Let B_t^1, \dots, B_t^d be a sequence of independent (1-dimensional) standard BMs, then $B_t = (B_t^1, \dots, B_t^d)$ is a standard *d*-dimensional BM.

Lemma 2.13. For standard d-dimensional BM B_t , the following holds:

- (*i*) $B_t = 0;$
- (ii) if s < t, then $B_t B_s$ is independent of \mathcal{F}_s ;

(iii) $(B_t - B_s) \sim N(0, (t - s)I)$ where I is the identity matrix, and the density is given by

$$f(x_1, \cdots, x_n) = \prod_{j=1}^d (2\pi(t-s))^{-1/2} \exp\left\{\frac{-x_j^2}{2(t-s)}\right\} = (2\pi(t-s))^{-d/2} \exp\left\{\frac{-|x^2|}{2(t-s)}\right\};$$

if B_t has drift μ and covariance matrix Γ , then $(B_t - B_s) \sim N((t - s)\mu, (t - s)\Gamma)$ instead; (iv) w.p.1 $t \mapsto B_t$ is continuous;

(v) $Y_t = \mu t + AB_t$ is a BM with drift μ and covariance matrix AA^T for $\mu \in \mathbb{R}^d$ and $A \in M_d(\mathbb{R})$.

2.6 BM as martingales

Let M_t be a continuous martingale and τ a stopping time, both adapted to the filtration $\{\mathcal{F}_t\}$. Let $\hat{M}_t = M_{t\wedge\tau}$ and suppose that $\mathbb{P}\{\tau < \infty\} = 1$. Then $\hat{M}_{\infty} = M_{\tau}$, and $\mathbf{E}(M_0) = \mathbf{E}(\hat{M})$ for every t. The optional stopping theorem says that if $\lim_{t\to\infty} \mathbf{E}(\hat{M}_t) = \mathbf{E}(\hat{M}_{\infty})$, then $\mathbf{E}(M_{\tau}) = \mathbf{E}(M_0)$.

Example (gambler's ruin for BM). Let B_t be a standard BM and $\tau = \inf\{t : B_t = a \text{ or } B_t = -b\}$ be the stopping time. Then $\mathbb{P}\{T < \infty\} = 1$ by the recurrence property of BM, and $\mathbf{E}(B_0) = 0$. Since $\mathbf{E}(B_{\tau}) = \lim_{t\to\infty} \mathbf{E}(B_{t\wedge\tau})$ by the dominating convergence theorem, we get $0 = \mathbf{E}(B_{\tau}) = a\mathbb{P}\{B_{\tau} = a\} - b\mathbb{P}\{B_{\tau} = -b\}$ which solves to $\mathbb{P}\{B_{\tau} = a\} = b/(a+b)$ and $\mathbb{P}\{B_{\tau} = -b\} = a/(a+b)$.

2.7 Harmonic functions in \mathbb{R}^d

Let D be a connected open subset of \mathbb{R}^d and $z \in D$ a point with $\operatorname{dist}(z, \partial D) > \epsilon$. Define the (spherical) mean value of f on the sphere $B_{\epsilon}(z)$ of radius ϵ about z:

$$MV(f, z, \epsilon) = \int_{|\omega - z| = \epsilon} f(\omega) \, ds(\omega)$$

where s is the surface measure (constant times the surface area) normalized s.t. $MV(1, z, \epsilon) = 1$. A function $f : D \to \mathbb{R}$ is **harmonic** if it is continuous and satisfies the *mean value property*: $MV(f, z, \epsilon) = f(z)$ for every $z \in D$ with $dist(z, \partial D) > \epsilon$.

Let $\Delta f = \sum_{j=1}^{d} \frac{\partial^2 f}{\partial x_j^2}$ be the *Laplacian* of f, then a function $f: D \to \mathbb{R}$ is harmonic iff it is C^2 and $\Delta f(z) = 0$ for all $z \in D$. When dimension d = 1, then harmonic is equivalent to linear, but when d > 1 the class of harmonic functions is larger.

2.8 Dirichlet problem

The Dirichlet problem asks: let $D \subset \mathbb{R}^d$ be a bounded domain and $F : \partial D \to \mathbb{R}$ a continuous function, can we find an extension $f : \overline{D} \to \mathbb{R}$ of F such that:

- (i) f = F on ∂D ;
- (ii) f is continuous on \overline{D} ;
- (iii) $\Delta f(x) = 0$ for all $x \in D$.

We first show that if exists, such f is unique:

Let B_t be a *d*-dimensional BM and $\tau = \inf\{t \ge 0 : B_t \in \partial D\}$. Define $f(x) = \mathbf{E}^x[F(B_\tau)]$, then f(x) is harmonic and continuous on D, and satisfies f = F on ∂D . The only thing missing from f being a solution to the Dirichlet problem is the continuity on ∂D . It turns out, f is only continuous on all the regular points $z \in \partial D$.

Let X_t be a (time-homogeneous) Markov process taking values in \mathbb{R}^d , the **infinitesimal generator** L is the operator is defined by

$$Lg(x) = \lim_{t \downarrow 0} \frac{\mathbf{E}^x[g(X_t)] - g(x)}{t}.$$

Proposition 2.14. Let B_t be a standard BM in \mathbb{R}^d and f a C^2 function (that does not grow too fast at ∞), then $Lf(x) = \Delta f(x)/2$.

Proof. WLOG assume that x = 0 and f(0) = 0. Since f is C^2 , the Taylor expansion gives

$$f(B_t) = \sum_{j=1}^d \partial_j f(0) B_t^j + \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \partial_{jk} f(0) B_t^j B_t^k + o(|B_t|^2).$$

Hence $Lf(x) = \lim_{t \downarrow 0} (\mathbf{E}^x[f(B_t)] - f(x))/t =?.$

Remark. If the BM B_t has mean $\mu \in \mathbb{R}^d$ and covariance matrix Γ , then

$$Lf(x) = \sum_{j=1}^d \mu_j \partial_j f(x) + \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \partial_{jk} f(x) \Gamma_{jk}$$

Proposition 2.15. Let B_t be a standard d-dimensional BM and $f : \mathbb{R}^d \to \mathbb{R}$ be bounded. Then for $t > 0, \ \varphi(t, x) = \mathbf{E}^x[f(B_t)]$ satisfies the heat equation

$$\partial_t \varphi(t, x) = \frac{1}{2} \Delta_x \varphi(t, x).$$

Proof. A Brownian motion B_t starting at x has density $p_t(x,y) = (2\pi t)^{-d/2} e^{-|y-x|^2/2t}$, where $\partial_t p_t = \Delta_x p_t(x,y)/2$. Since f is bounded, we can exchange integral and derivative:

$$\partial_t \varphi(t, x) = \partial_t \int_{\mathbb{R}^d} f(y) p_t(x, y) \, dy$$

=
$$\int_{\mathbb{R}^d} f(y) \partial_t p_t(x, y) \, dy$$

=
$$\frac{1}{2} \int_{\mathbb{R}^d} f(y) \Delta_x p_t(x, y) \, dy$$

=
$$\frac{1}{2} \Delta_x \int_{\mathbb{R}^d} f(y) p_t(x, y) \, dy = \frac{1}{2} \Delta_x \varphi(t, x).$$

Let B_t be a standard d-dimensional BM. For $d \ge 3$, the **Green's function** G(x, y) is defined by

$$\begin{split} G(x,y) &= \lim_{\epsilon \downarrow 0} \mathbf{E}^x \left[\frac{1}{V_{\epsilon}} \int_0^\infty \mathbf{1}_{\{|B_t - y| \le \epsilon\}} dt \right] \\ &= \lim_{\epsilon \downarrow 0} \frac{1}{V_{\epsilon}} \int_0^\infty \int_{|y - z| \le \epsilon} p_t(x,z) \, dz dt \\ &= \int_0^\infty p_t(x,y) \, dt \\ &= \int_0^\infty \frac{1}{(2\pi t)^{d/2}} \exp\left\{ \frac{-|y - x|^2}{2t} \right\} dt = \frac{\Gamma(d/2 - 1)}{2\pi^{d/2}} |x - y|^{2-d}, \end{split}$$

where V_{ϵ} is the (*d*-dimensional) volume of the ϵ -ball. Intuitively, G(x, y) represents the expected amount of times spent in y of a standard Brownian motion starting at x. $g_y(x) = G(x, y)$ is harmonic for $x \neq y$. Also define

$$G(x) = \int_0^\infty \frac{1}{(2\pi t)^{d/2}} \exp\left\{\frac{-|x|^2}{2t}\right\} dt$$

and $G_D(x, y)$ to be the expected amount of time spent in y before leaving D of a standard BM starting at x. Then $G(x, y) = G_D(x, y) + \mathbf{E}^x[G(B_\tau, y)]$ where $\tau = \inf\{t : B_t \in \partial D\}$.

_	_

Proposition 2.16. Let $g(y) = G_D(x, y)$, then

- (i) g is harmonic on $D \setminus \{x\}$;
- (ii) $g(y) \to 0$ for $y \to z \in \partial D$ and z regular;
- (iii) $G_D(x,y) = G_D(y,x).$

For $d \leq 2$, the recurrence property of BM makes $G(x) = \infty$. Hence we redefine, for d = 2, the **potential kernel**

$$G(x) = \int_0^\infty [p_t(0,z) - p_t(o,x)] dt = \int_0^\infty \frac{1}{2\pi t} \left[e^{-1/2t} - e^{-|x|^2/2t} \right] dt = -\frac{1}{\pi} \log|x|$$

where we take z = (0, 1). This is a radially symmetric harmonic function on $\mathbb{R}^2 \setminus \{0\}$, and carries the intuitive meaning of "time spent in x compared to the time spent on the unit circle. Hence G(x) = 0 for |x| = 1. When t is large, $e^{-1/2t} - e^{-|x|^2/2t} = \frac{|x|^2 - 1}{2t} + O(1/t^2)$, hence $G(x) < \infty$ for $x \neq 0$. If we choose $z \neq (0, 1)$, then G(x) will differ from $-\log |x|/\pi$ by a constant.

Proposition 2.16 still works for this $G_D(x, y)$ defined as such in d = 2, where

$$G_D(x,y) = \mathbf{E}^x \left[\frac{\log |B_\tau - z|}{\pi} \right] - \frac{\log |x - z|}{\pi}$$

Let $D \subset \mathbb{R}^2$ be a bounded domain. Let $G_D(x, y) = \int_0^\infty p_t^D(x, y) dt$ where $p_t^D(x, y)$ is the density of BM starting at x and killed when reaching the boundary, then for $f: D \to \mathbb{R}$ a continuous function,

$$\mathbf{E}^{x}\left[f(B_{t})\mathbf{1}_{\{t < T\}}\right] = \int_{D} p_{t}^{D}(x, y)f(y) \, dy.$$

Also, $p_t^D(x, y)$ satisfies the heat equation: $\partial_t p_t^D(x, y) = \Delta_x p_t^D(x, y)/2$, and $p_t^D(x, y) = p_t^D(y, x)$. We say that $p_t^D(x, y)$ is the solution to the heat equation with initial condition $p_0(x, y) = \delta_{xy}$. Also

$$p_t^D(x,y) = p_t(x,y) - \mathbf{E}^x \left[p_{t-\tau}(B_{\tau},y) \mathbf{1}_{\{t>T\}} \right].$$

3 Stochastic Calculus

3.1 Construction

Consider the differential equation

$$dX_t = R_t \, dt + A_t \, dB_t$$

where B_t is a BM, and X_t and R_t are random variables. This equation carries the meaning "at time t, X_t looks *locally* like a BM (R_t, A_t^2) . We can not differentiate both sides by dt since BM is non-differentiable. But we can consider

$$X_t = X_0 + \int_0^t R_s \, ds + \int_0^t A_s \, dB_s.$$

It remains to make sense of the last term.

A $\{\mathcal{F}_t\}$ -adapted-process A_t is **simple** if there exists $0 = t_0 < t_1 < \cdots < t_n = \infty$ and L^2 -random variables Y_0, \cdots, Y_n such that Y_j is \mathcal{F}_{t_j} -measurable and $A_t = Y_j$ for $t \in [t_j, t_{j+1})$.

Let B_t be a Let B_t be a standard BM and A_t be a \mathcal{F}_t -adapted standard BM. The (Itô) **stochastic** integral of A_t is defined by

$$Z_t = \int_0^t A_s \, dB_s = \sum_{i=0}^{j-1} Y_i (B_{t_{i+1}} - B_{t_i}) + Y_j (B_t - B_{t_j})$$

for $t \in [t_j, t_{j+1}]$.

Proposition 3.1. The stochastic integral defined satisfies the following properties:

- (i) Z_t is adapted to $\{\mathcal{F}_t\}$;
- (ii) (linearity) let a and b be constants, and C_t be a simple process, then

$$\int_{0}^{t} (aA_{s} + bC_{s}) \, dB_{s} = a \int_{0}^{t} A_{s} \, dB_{s} + b \int_{0}^{t} C_{s} \, dB_{s};$$

also if $r \in [0, t]$, then

$$\int_0^t A_s \, dB_s = \int_0^r A_s \, dB_s + \int_r^t A_s \, dB_s;$$

- (iii) (martingale) Z_t is an L^2 -martingale;
- (iv) (variance isometry)

$$\operatorname{Var}(Z_t) = \mathbf{E}(Z_t^2) = \int_0^t \mathbf{E}(A_s^2) \, dB_s;$$

(v) (continuity) w.p.1, $t \mapsto Z_t$ is a continuous function.

Proof. f

Proposition 3.2. Let A_t be a bounded, continuous, and $\{\mathcal{F}_t\}$ -adapted process. Then for any t_0 , there exists a sequence of bounded simple processes $A_t^{(n)}$ converging to A_t in the sense that

$$\lim_{n \to \infty} \mathbf{E} \left[\int_0^{t_0} (A_t - A_t^{(n)})^2 \, dt \right] = 0.$$

Hence we extend the definition of stochastic integral for bounded continuous (adapted) process A_t :

$$Z_t = \int_0^t A_s \, dB_s = \lim_{n \to \infty} \int_0^t A_s^{(n)} \, dB_s.$$

Remark. properties, continuity

A $\{\mathcal{F}_t\}$ -adapted process $A_s(\omega)$ is **progressively measurable** if $A_s(\omega)$ is measurable in $\mathcal{B}([0,t]) \otimes \mathcal{F}_t$ measurable for $s \in [0,t]$.

3.2 Itô's formula

Proposition 3.3 (Itô's formula). Let B_t be a standard BM and $f : \mathbb{R} \to \mathbb{R}$ be C^2 , then for every t,

$$f(B_t) - f(B_0) = \int_0^t f'(B_s) \, dB_s + \frac{1}{2} \int_0^t f''(B_s) \, ds. \tag{*}$$

Proof. Since both sides of (*) are continuous, it suffices to show (*) for dyadics $t \in \mathfrak{D}$. We do the case for t = 1, the other $t \in \mathfrak{D}$ will be similar. Let $0 = t_0 < t_1 < \cdots < t_n = 1$ be a partition. Then

$$f(B_t) - f(B_0) = \sum_{j=1}^n \left(f(B_{t_j}) - f(B_{t_{j-1}}) \right).$$

Assume that there exists $C < \infty$ such that |f''| < C. By Taylor expansion, we have

$$\frac{1}{2}m_{j,n}(B_{t_j} - B_{t_{j-1}})^2 \le \left| f(B_{t_j}) - f(B_{t_{j-1}}) - f'(B_{t_{j-1}})(B_{t_j} - B_{t_{j-1}}) \right| \le \frac{1}{2}M_{j,n}(B_{t_j} - B_{t_{j-1}})^2$$

where $M_{j,n} = \sup_{z \in [B_{t_{j-1}}, B_{t_j}]} f''(z)$ and $m_{j,n} = \inf_{z \in [B_{t_{j-1}}, B_{t_j}]} f''(z)$. Refine the partition so that

$$\sum_{j=1}^{n} f'(B_{t_{j-1}})(B_{t_j} - B_{t_{j-1}}) \to \int_{0}^{1} f'(B_s) \, dB_s, \text{ and}$$
$$\sum_{j=1}^{n} \frac{1}{2} m_{j,n} (B_{t_j} - B_{t_{j-1}})^2, \sum_{j=1}^{n} \frac{1}{2} M_{j,n} (B_{t_j} - B_{t_{j-1}})^2 \to \frac{1}{2} \int_{0}^{1} f''(B_s) \, ds.$$

If |f| is not bounded, then let $T_K = \inf\{t : |f''(B_t)| \ge K\}$. Then Itô's formula holds for $t \land T_K$. Now let $K \to \infty$.

Remark. Itô's formula is often written in the differential form:

$$df(B_t) = f'(B_t) dB_t + \frac{1}{2} f''(B_t) dt.$$

Intuitively, the process $Y_t = f(B_t)$ evolves like a Brownian motion with drift $f''(B_t)/2$ and variance $f'(B_t)^2$ locally at time t.

Proposition 3.4 (Itô's formula, II). Let f(t, x) be C^1 in t and C^2 in x, then

$$f(t, B_t) - f(0, B_0) = \int_0^t \left(\partial_t f(s, B_s) + \frac{1}{2} \partial_x^2 f(s, B_s) \right) \, ds + \int_0^t \partial_x f(s, B_s) \, dB_s$$

Proof. Again, it suffices to show for t = 1. Observe that

$$f(t_j, B_{t_j}) - f(t_{j-1}, B_{t_{j-1}}) = f(t_j, B_{t_j}) - f(t_{j-1}, B_{t_j}) + f(t_{j-1}, B_{t_j}) - f(t_{j-1}, B_{t_{j-1}}).$$

Hence taking sum and refining the partition

$$\sum_{j=1}^{n} f(t_j, B_{t_j}) - f(t_{j-1}, B_{t_{j-1}}) = \sum_{j=1}^{n} \partial_t f(t_j, B_{t_j})(t_j - t_{j-1}) + \dots$$

Let $f(t, x) = e^{at+bx}$ and $X_t = f(t, B_t)$, then

$$dX_t = X_t \left[\left(a + \frac{b^2}{2} \right) dt + b \, dB_t \right].$$

Hence solution to the SDE $dX_t = X_t(\mu dt + b dB_t)$ is the **geometric Brownian motion**

$$X_t = X_0 \exp\{(\mu - \sigma^2/2)t + \sigma B_t\}.$$

Proposition 3.5. Let $\{X_t\}_{0 \le t \le 1}$ be a process satisfying $dX_t = R_t dt + A_t dB_t$, then the quadratic variation

$$\langle X \rangle_t = \lim_{n \to \infty} \sum_{j=1}^n \left(X_{jt/n} - X_{(j-1)t/n} \right)^2$$

of X_t is given by

$$\left\langle \int_0^t A_s \, dB_s \right\rangle = \lim_{n \to \infty} \sum_{j=1}^n \left(\int_0^{tj/n} A_s \, dB_s \right)^2 = \lim_{n \to \infty} \sum_{j=1}^n \int_0^{tj/n} A_s^2 \, dB_s.$$

We write $d\langle X \rangle_t = A_t^2 dt$.

Proof. Let j = 1, then

$$(X_{t/n} - X_0)^2 = \left(\int_0^{t/n} R_s \, ds + \int_0^{t/n} A_s \, dB_s\right)^2$$

= $\left(\int_0^{t/n} R_s \, ds\right)^2 + 2\left(\int_0^{t/n} R_s \, ds\right)\left(\int_0^{t/n} A_s \, dB_s\right) + \left(\int_0^{t/n} A_s \, dB_s\right)^2$
= $O(1/n^2) + O(1/n)O(1/\sqrt{n}) + O(1/n).$

There are *n* terms of this form in the sum. Hence as $n \to \infty$ the only term contributing to the sum is the last term of order O(1/n).

Proposition 3.6 (Itô's formula (III)). Let X_t be the process that satisfies $dX_t = R_t dt + A_t dB_t$. Let f(t, x) be C^1 in t and C^2 in x. Then

$$df(t,X_t) = \partial_t f(t,X_t) dt + \partial_x f(t,X_t) dX_t + \frac{1}{2} \partial_{xx}^2 f(t,X_t) d\langle X \rangle_t$$

= $\left(\partial_t f(t,X_t) + R_t \partial_x f(t,X_t) + \frac{1}{2} A_t^2 \partial_{xx}^2 f(t,X_t) \right) dt + A_t \partial_x f(t,X_t) dB_t.$

Diffusion

A diffusion process X_t is a process satisfying

$$dX_t = m(t, X_t) dt + \sigma(t, X_t) dB_t \tag{(*)}$$

with certain initial condition $X_0 = x_0$. We can simulate a diffusion process using stochastic Euler's method: take $x_0 = 0$ and small Δt ad define recursively

$$X_{(k+1)\Delta t} = X_{k\Delta t} + m(k\Delta t, X_{k\Delta t})\Delta t + \sigma(k\Delta t, X_{k\Delta t})\sqrt{\Delta t}N,$$

where $N \sim N(0, 1)$. Suppose f is nice enough (exchanging limit and integral) so that the generator

$$Lf(x) = \lim_{t \downarrow 0} \frac{\mathbf{E}^{x}[f(X_{t})] - f(x)}{t}$$

is defined. For simplicity assume time homogeneity $(m(t,x) = m(x) \text{ and } \sigma(t,x) = \sigma(x))$ with σ and m both continuous and bounded. By Itô's formula

$$\mathbf{E}^{x}[f(X_{t})] = \mathbf{E}\left[\int_{0}^{t} \left(m(X_{s})f'(X_{s}) + \frac{1}{2}\sigma^{2}(X_{s})f''(X_{s})\right)ds + \int_{0}^{t} \sigma(X_{s})f'(X_{s})dB_{t}\right].$$

The last term is a martingale with expectation 0. Hence the generator is given by

$$Lf(x) = m(x)f'(x) + \frac{1}{2}\sigma^{2}(x)f''(x).$$

Now we want to solve the SDE given by (*) with initial condition $X_0 = x_0$ to show that diffusion process X_t actually exists, under the assumption that m and σ are uniformly Lipschitz in x:

$$|m(t,x) - m(t,y)| \le \beta |x-y|$$
 and $|\sigma(t,x) - \sigma(t,y)| \le \beta |x-y|$

for some $\beta > 0$. We use the stochastic version of Picard iteration method from ODE. Let $X_t^{(0)} = x_0$ and define recursively

$$X_t^{(n+1)} = x_0 + \int_0^t m(s, X_s^{(n)}) \, ds + \int_0^t \sigma(s, X_s^{(m)}) \, dB_s.$$

For simplicity assume $0 \le t \le 1$. We want to show that the L^2 -norm is bounded:

$$\mathbf{E}\left[\left|X_{t}^{(n+1)} - X_{t}^{(n)}\right|^{2}\right] \le C\frac{\beta^{2n}t^{n+1}}{(n+1)!},\tag{**}$$

so that the L^2 -limit $X_t = \lim_{n \to \infty} X_t^{(n)}$ exists for each t. We can choose $t \in \mathfrak{D} \cap [0, 1]$ first and then extend it. Fix t, we show (**) by induction:

$$\begin{split} \text{LHS} &\leq 2\mathbf{E} \left[\left(\int_0^t \left(m(X_s^{(n)}) - m(X_s^{(n-1)}) \right) \, ds \right)^2 \right] + 2\mathbf{E} \left[\left(\int_0^t \left(\sigma(X_s^{(n)}) - \sigma(X_s^{(n-1)}) \right) \, dB_s \right)^2 \right] \\ &\leq 2\mathbf{E} \left[\int_0^t \left(m(X_s^{(n)}) - m(X_s^{(n-1)}) \right)^2 \, ds \right] + 2\mathbf{E} \left[\int_0^t \left(\sigma(X_s^{(n)}) - \sigma(X_s^{(n-1)}) \right)^2 \, dB_s \right] \\ &\leq 4\mathbf{E} \left[\int_0^t \beta^2 \left| X_s^{(n)} - X_s^{(n-1)} \right|^2 \, ds \right] \\ &\leq 4\beta^2 \int_0^t C \frac{\beta^{2(n-1)} s^n}{n!} \, ds = C \frac{\beta^{2n} t^{n+1}}{(n+1)!}. \end{split}$$

A particular example of diffusion process is **Bessel process** X_t which satisfies

$$dX_t = \frac{a}{X_t} dt + dB_t$$

for $0 \le t < T = \min\{t : X_t = 0\}$, where $a \in \mathbb{R}$ and $X_0 = x_0 > 0$.

Proposition 3.7 (product rule). Let $dX_t = R_t dt + A_t dB_t$ and $dY_t = S_t dt + C_t dB_t$, then $d(X_tY_t) = X_t dY_t + Y_t dX_t + d\langle X, Y \rangle_t$, where the covariation term

$$\langle X, Y \rangle_t = \lim_{n \to \infty} \sum_{j \le nt} (X_{j/n} - X_{(j-1)/n}) (Y_{j/n} - Y_{(j-1)/n}) = \int_0^t A_s C_s \, ds$$

Proof. Sketch.

$$\begin{aligned} X_{t+\Delta t}Y_{t+\Delta t} - X_tY_t &= (X_{t+\Delta t} - X_t)Y_{t+\Delta t} + X_tY_{t+\Delta t} - X_tY_t \\ &= (X_{t+\Delta t} - X_t)Y_t + (X_{t+\Delta t} - X_t)(Y_{t+\Delta t} - Y_t) + X_t(Y_{t+\Delta t} - Y_t) \\ &\approx Y_t \, dX_t + d(X_t)d(Y_t) + X_t \, dY_t \end{aligned}$$

where $d(X_t)d(Y_t)$ is nonzero. As for the covariation, notice that $(dB_t)^2 \approx dt$.

In higher dimensions

Let $B_t = (B_t^1, \dots, B_t^d)$ be a d-dimensional BM and $X_t = (X_t^1, \dots, X_t^n)$ a vector process satisfying

$$dX_t^j = R_t^j dt + \sum_{k=1}^d A_t^{j,k} dB_t^k$$

Since we have $\langle B^j, B^k \rangle_t = 0$ for $j \neq k$ and $\langle B^j, B^k \rangle_t = t$ when j = k, we have

$$\langle X^j \rangle_t = \sum_{k=1}^d \int_0^t (A^{j,k}_s)^2 \, ds, \quad \text{and} \quad \langle X^j, X^k \rangle_t = \sum_{i=1}^t A^{j,i}_s A^{k,i}_s \, ds.$$

Proposition 3.8 (Itô' formula, final form). Suppose the vector process $X_t = (X_t^1, \dots, X_t^n)$ satisfies

$$dX_t^j = R_t^j dt + \sum_{k=1}^d A_t^{j,k} dB_t^k.$$

Let $f(t,x):[0,\infty)\times\mathbb{R}^n\to\mathbb{R}$ be C^1 in t and C^2 in x. Then

$$f(t, X_t) = f(0, X_0) + \int_0^t \partial_t f(s, X_s) \, ds + \sum_{j=1}^n \int_0^t \partial_j f(s, X_s) \, dX_s^j + \frac{1}{2} \sum_{j=1}^k \sum_{k=1}^n \partial_{jk}^2 f(s, X_s) \, d\langle X^j, X^k \rangle_s.$$

In particular if n = d and $X_t = B_t$, then

$$df(t, B_t) = \nabla_x f(t, B_t) \cdot dB_t + \left[\partial_t f(t, B_t) + \frac{1}{2}\Delta_x f(t, B_t)\right] dt$$

Some applications

Martingale betting strategy, arbitrage: we want the process to reach value 1 at time t = 1. If it reaches 1 at t = 1/2 we simply stops betting. If it does not reach 1 at t = 1/2, then we bet more dollars so that the variance is big, and there is a positive probability or reaching 1 at t = 3/4. Repeat the observation at t = 3/4. The moral is: in a continuous-time setting we can always "win" within a given time, because we can bet infinitely many times.

European option: Let T (deterministic) be the call time and K be the strike price. Suppose the stock (asset) price X_t is a diffusion process

$$dX_t = m(t, X_t) dt + \sigma(t, X_t) dB_t.$$

The value of the option at time T is $F(X_T) = (X_T - K) \vee 0$. Let r(t, x) be the interest (bond) rate and

$$R_t = \exp\left\{\int_0^t r(s, X_s) \, ds\right\}.$$

One dollar now (t = 0) will be promised to value R_t dollars in the future at time t. Then

$$\varphi(t,x) = \mathbf{E}\left[\exp\left\{-\int_{t}^{T} r(s,X_s) \, ds\right\} F(X_T) \mid X_t = x\right] = \mathbf{E}\left[(R_t/R_T)F(X_T) \mid X_t = x\right]$$

is a martingale since

$$M_t = \mathbf{E} \left[R_T^{-1} F(X_T) \mid \mathcal{F}_t \right] = R_T^{-1} \varphi(t, x)$$

is a martingale.

Change of measure

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space. Let B_t be a standard Brownian motion. Suppose that M_t satisfies $dM_t = A_t M_t dB_t$ and $M_0 = 1$. Then $M_t = e^{Y_t}$ is a only local martingale, where

$$Y_t = \int_0^t A_s \, dB_s - \frac{1}{2} \int_0^t A_s^2 \, ds$$

by Itô's formula. Let $T_n = \inf\{t : M_t = n \text{ or } \langle M \rangle_t = n\}$ and $T = \lim_{n \to \infty} T_n$. Then $M_{t \wedge T_n}$ is a nonnegative martingale. Now let M_t be a nonnegative martingale. Define probability measure \mathbb{P}^* by $\mathbb{P}_t^*(V) = \mathbf{E}[M_t \mathbf{1}_V]$ for $V \in \mathcal{F}_t$. That is, M_t is the Radon-Nikodym derivative $d\mathbb{P}^*/d\mathbb{P}$.

Lemma 3.9. If one of the following holds, then M_s is a martingale for $0 \le s \le t$:

- (*i*) $\mathbf{E}(M_t) = 1;$
- (*ii*) $\mathbb{P}^* \{T > t\} = 1;$
- (iii) (Novikov's condition) $\mathbf{E}[\exp\{\langle Y \rangle_t/2\}] < \infty$.

Theorem 3.10 (Girsanov's theorem). If M_t is a nonnegative martingale, then $dB_t = A_t dt + dW_t$ for t < T, where W_t is a standard Brownian motion with respect to \mathbb{P}^* .

Proof. Firstly, $W_0 = 0$ and $t \mapsto W_t$ is continuous. Since $\mathbb{P}^* \ll \mathbb{P}$ on \mathcal{F}_t , we have $\langle W \rangle_t = t$. Hence by, it suffices to show that W_t is a \mathbb{P}^* -martingale.

Remark. Heuristics of Girsanov's theorem

Example (Brownian motion tilted by B_t^1). Let $M_t = B_t$ and $B_0 = 1$. Then M_t is a martingale and $dM_t = B_t^{-1}M_t dB_t$. Apply Girsanov's theorem we see that for t < T, $dB_t = B_t^{-1} dt + dW_t$. Hence B_t is a Bessel process with a = 1. Hence for fixed t, with \mathbb{P}^* -probability 1, $0 < B_s < \infty$ for $0 \le s \le t$ and $T = \infty$. But with respect to \mathbb{P} , B_s may reach 0. We have tilted the Brownian motion so that the weight of paths reaching 0 is 0.

Example (Brownian motion tilted by B_t^r). Let $X_t = B_t^r$ and $B_t = 1$. Then M_t is a martingale and satisfies

$$dX_t = rB_t^{r-1} dB_t + \frac{r(r-1)}{2}B_t^{r-2} dt = \left(\frac{r}{B_t} dB_t + \frac{r(r-1)}{2B_t^2} dt\right)B_t^r$$

by Itô's formula. We use the following trick to get rid of the drift term: let $M_t = C_t X_t$ where

$$C_t = \exp\left\{-\int_o^t \frac{r(r-1)}{2B_s^2} \, ds\right\}.$$

Then use product rule and the fact that $\langle C, X \rangle_t = 0$ to conclude that $dM_t = rB_t^{-1}M_t dB_t$. Apply Girsanov's theorem, we see that B_t is a Bessel process with a = r. When $r \ge 1/2$, M_t is a martingale since $\mathbb{P}^*\{T = \infty\} = 1$.

Let $dX_t = X_t(m dt + \sigma dB_t)$ where $m = m(t, X_t)$ and $\sigma = \sigma(t, X_t)$. We want to find a measure \mathbb{P}^* under which the drift term disappears and X_t is a martingale. It suffices to show that $dB_t = -(m/\sigma) dt + dW_t$, where W_t is a standard Brownian motion under \mathbb{P}^* . Let $dM_t = (-m/\sigma)M_t dB_t$. To use Girsanov's theorem, we need that $M_t = e^{Y_t}$ is a nonnegative martingale.

Claim: M_t is a martingale if $\mathbf{E}(M_t) = 1$.

f

Application to finance

Classification of Lévy process

A process $\{X_t\}_{t>0}$ is a **Lévy process** if

- (i) it has independent, identically distributed increments, and
- (ii) $X_t \to X_0$ is probability as $t \downarrow 0$.

For example, Brownian motion (m, σ^2) and Poisson process (λ) are Lévy processes.

An example of Lévy process with discontinuous paths is $T_a = \inf\{t : B_t = a\}$ for B_t a standard Brownian motion. It has density $at^{-3/2}(2\pi)^{-1/2}\exp\{-a^2/2t\}$. It does not have continuous path, for let $a = \max\{B_t : t \in [0,1]\}$, then $\lim_{\epsilon \downarrow 0} T_{a+\epsilon} \neq T_a$. Similarly, let $B_t = (B_t^1, B_t^2)$ be a standard 2-dimensional Brownian motion. Then $Y_s = B_{T_s}^1$ is a Lévy process with Cauchy distribution $s^{-1}\pi(x^2 + s^2)$, where $T_s = \min\{t : B_t^2 = s\}$. It does not have continuous paths. It turns out that Brownian motion is the only Lévy process with continuous paths.

Our goal is to classify all Lévy process.

A random variable X has **infinitely divisible distribution** if for any $n \in \mathbb{Z}^+$ we can find a sequence of independent, identically distributed Y_1, \dots, Y_n such that $X = Y_1 + \dots + Y_n$ in law.

Lemma 3.11. If X_t is a Lévy process, then X_t has an infinitely divisible distribution for each t. Conversely, for any infinitely divisible distribution F, there is a Lévy process X_t such that X_1 has distribution F.

Proof. Write $X_t = \sum_{j=1}^n (X_{jt/n} - X_{(j-1)t/n})$ as a telescoping sum. For the converse,

Exercise from Wednesday Class (Due this week)

Let $D \subset \mathbb{R}^2$ be a bounded, simply connected domain containing the origin 0 and $\hat{D} = D \setminus \{0\}$. Let B_t be a standard Brownian motion starting at $B_0 = x \in \hat{D}$. Let $T_s = \inf\{t : |B_t| \leq e^{-s}\}, T = \inf\{t : B_t = 0\}, \text{ and } \tau = \inf\{t : B_t \notin D\}.$

(i) Let $G(x) = \lim_{s \to \infty} s \mathbb{P}^x \{T_s < \tau\}$. Show that $0 < G(x) < \infty$ for $x \in \hat{D}$.

Suppose D is contained in a circle C of radius R around the origin, then

$$\mathbb{P}^x\{T_s < \tau\} \le \mathbb{P}^x\{T_s < \tau_R\} = \frac{\log R - \log |x|}{\log R - \log e^{-s}},$$

where $\tau_R = \inf\{t : B_t \notin C\}$. Hence $\limsup_{s \to \infty} s \mathbb{P}^x\{T_s < \tau\} \le \log R + \log(1/|x|) < \infty$.

On the other hand, suppose D contains a circle c of radius r around the origin, then

$$\mathbb{P}^{x}\{T_{s} < \tau\} = \mathbb{P}^{x}\{\tau' < \tau\}\mathbb{P}^{\frac{r}{2}}\{T_{s} < \tau\} \ge \mathbb{P}^{x}\{\tau' < \tau\}\mathbb{P}^{\frac{r}{2}}\{T_{s} < \tau_{r}\} = K\frac{\log r - \log(r/2)}{\log r - \log e^{-s}},$$

where $K = \mathbb{P}^{x} \{ \tau' < \tau \}, \ \tau' = \{ t : |B_t| < r/2 \}, \ \text{and} \ \tau_r = \inf \{ t : B_t \notin c \}.$ Hence

$$\liminf_{s \to \infty} s \mathbb{P}^x \{ T_s < \tau \} \ge \liminf_{s \to \infty} s K \frac{\log r - \log(r/2)}{\log r - \log e^{-s}} = K(\log r - \log(r/2)) > 0.$$

(Monotonicity)

(ii) Show that G is harmonic in D.

Choose any $x \in \hat{D}$. Let $\epsilon < e^{-s}$ and $\epsilon < |x|$. Then

$$s\mathbb{P}^x\{T_s<\tau\} = s\int_{|z-x|=\epsilon}\mathbb{P}^z\{T_s<\tau\}ds$$

satisfies the mean-value property, where s is the normalized surface measure. By monotonicity from part (i), we can exchange limit and integral. Hence $G(x) = MV(G, x, \epsilon)$ satisfies the mean-value property, and is harmonic in \hat{D} .

- (iii) Show that if $x_n \to z \in \partial D$, then $G(x_n) \to 0$. (A conformal invariance argument)
- (iv) Let $M_t = G(B_t)$ for $0 \le t < t \land T$. Show that M_t is a local martingale for $t < T \land \tau$. Use Itô's formula: $dM_t = dG(B_t) = \nabla G(B_t) \cdot dB_t + \Delta G(B_t) dt/2 = \Delta G(B)_t \cdot dB_t$, since G is harmonic by part (ii). Hence M_t is a local martingale.
- (v) Use Girsanov's theorem to find a new probability measure under which $T < \infty$ and $T < \tau$.
- (vi) Is M_t a martingale?

Let $\{M_t\}_{t\geq 0}$ be a nonnegative discrete-time martingale with $M_0 = 1$. Let $M_{\infty} = \lim_{n\to\infty} M_n$. Let \mathcal{F}_n be the σ -algebra generated by $\{M_0, \cdots, M_n\}$. Define measure \mathbb{Q}_n on \mathcal{F}_n by $\mathbb{Q}_n(V) = \mathbf{E}[M_n \mathbf{1}_V]$ for $V \in \mathcal{F}_n$. Let \mathbb{Q} be the measure that is equal to \mathbb{Q}_n when restricted to \mathcal{F}_n . Show that if $\mathbb{Q}\{M_{\infty} < \infty\} = 1$ or $\mathbb{Q}\{\sup_n M_n < \infty\} = 1$, then $\mathbf{E}[M_{\infty}] = 1$.