
2 Brownian motion

2.1 Lévy’s construction of BM

Consider the 1-d case, let Bt be the position (of a particle) at time t.

(i) (start at origin) B0 = 0, for convenience purposes;

(ii) (independent increment) Bt −Bs is independent of the σ-algebra generated by {Br : r ≤ s},
for s < t;

(iii) (identically distributed increments) Bt−Bs has the same distribution as Bt−s−B0, for s < t.

(iv) (continuity w.p.1) the function t 7→ Bt is continuous w.p.1

A process satisfying (i)-(iii) is a Lévy process. For instance, a Poisson process is a Lévy process
but does not satisfy (iv)

Proposition 2.1. If a process satisfies (i)-(iv), then there exists some µ ∈ R and σ2 ≥ 0 s.t.
Bt −Bs ∼ N(µ(t− s), σ2(t− s)).

A Brownian motion (or Wiener Process) with drift µ and variance parameter σ2 starting at
the origin is a stochastic process (a collection of random variables indexed by time t) {Bt : t ≥ 0}
satisfying (i), (ii), (iv), and Bt −Bs ∼ N(µ(t− s), σ2(t− s)) for s < t.

Proposition 2.2. If Bt is a standard Brownian motion, then Yt = σBt + tµ is a Brownian motion
with drift µ and variance parameter σ2.

Does Brownian motion exist? We give a concrete construction.

Lemma 2.3. Let X and Y be independent normal variables with zero mean and σ2 variance, then
X + Y and X − Y are independent normal variables with zero mean and 2σ2 variance.

Construction. By Proposition 1.2, it suffices to construct a standard BM. It also suffices to
consider only the interval [0, 1] by definition.

Consider the dyadic integers Dn = {j2−n : j = 0, 1, · · · , 2n} and D = ∪n≥0Dn. We first construct
Bt for t ∈ D and prove that it is uniformly continuous in t w.p.1. Since uniformly continuous
functions defined on a dense set has a unique extension, we simply define Bt = limn→∞Btn for
tn → t and tn ∈ D.

Let {Nq : q ∈ D} be a collection of independent standard normal random variables, then we define

B1 = N1

B1/2 = B1/2 +N1/2/2

B1/4 = B1/2/2 +N1/4/2
3/2

B3/4 = 1−B1/4

· · ·
Bd = Bd+1/2n/2 +Nd/2

(n+1)/2 for d ∈ Dn \Dn−1

.

By Lemma 1.3, {B1/2n , B2/2n − B1/2n , · · · , B1 − B2n−1/2n} are independent N(0, 1/2n) variables.
We are left to show that q 7→ B1 is uniformly continuous w.p.1.
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It suffices to show that w.p.1, for any α < 1/2 and

Kn = sup{|Bq −Bs| : q, s ∈ D and |q − s| ≤ 1/2n},

limn→∞ 2αnKn = 0 (in particular Kn → 0). Let

Y (j, n) = sup{
∣∣B1 −B(j−1)/2n

∣∣ : q ∈ D ∩ [(j − 1)/2n, j/2n]}

and Jn = max{Y (j, n) : j = 1, · · · , 2n}, then Jn ≤ 3Kn, and it suffices to substitute Kn for Jn.
Observe that Y (1, n), · · · , Y (2n, n) are i.i.d., and Y (1, n) has the same distribution as Y (1, 0)/2n/2

(the reason for 2n/2 instead of 2n is because while the variance is halved, the distribution is scaled
by a factor of

√
2). Hence,

P{Jn ≥ εn} = P{maxY (j, n) ≥ εn}

≤
2n∑
j=1

P{Y (j, n) ≥ εn}

= 2nP{Y (1, n) ≥ εn}
= 2nP{Y (1, 0) ≥ 2n/2εn}.

By Borel-Cantelli lemma, if we can find εn such that
∑

n≥1 P{Jn ≥ εn} <∞, then Jn ≤ εn for large
enough n. We need a lemma:

Lemma 2.4 (reflection principle (for dyadics)). For any a > 0, P{Y (1, 0) > a} ≤ 4P{B1 ≥ a}.

Proof. Since P{Y (1, 0) > a} ≤ 2P{supq∈D Bq ≥ a}, it suffices to show that P{maxj=1,··· ,2n Bj/2n >
a} ≤ 2P{B1 ≥ a} for any n. Fix n and let

Aj = {Bj/2n > a and Bi/2n ≤ a for i = 1, · · · , j − 1}

be the first time that Bj/2n is larger than a, then {maxj=1,··· ,2n Bj/2n > a} = t2n

k=1Ak. Also observe
that P(B1 > a|Ak) ≥ 1/2. Hence

P{ max
j=1,··· ,2n

Bj/2n > a}/2 =
2n∑
k=1

P(Ak)/2 ≤
2n∑
k=1

P{B1 > a;Ak} = P{B1 > a}.

For large enough a, we have the following estimate:

P{Y (1, 0) > a} ≤ 4P{B1 ≥ a} = 4

∫ ∞
a

e−x
2/2dx/

√
2π ≤ 4

∫ ∞
a

e−xa/2dx/
√

2π ≤ Ce−a2/2/a ≤ e−a2/2

where C is some constant. Hence we have

P{Jn ≥ εn2−n/2} = 2nP{Y (1, 0) ≥ εn} ≤ 2ne−ε
2
n/2 = en(log 2−β2/2)

if we choose εn = β
√
n. Hence if we choose β2 > 2 log 2, then

∑
n≥1 P{Jn ≥ β

√
n2−n/2} < ∞ as

desired, and by Borel-Cantelli lemma Jn ≤ β
√
n2−n/2. Hence limn→∞ 2αnJn = 0 for α < 1/2.

Finally, one can check that Bt = limn→∞Btn for tn → t and tn ∈ D does define a Brownian motion.

Remark. We need out probability space (Ω,F ,P) to be large enough to have a countable collection
of independent standard normal random variables. Luckily, [0, 1] with Borel σ-field and Lebesgue
measure suffices (HW1).
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2.2 Properties of BM

Proposition 2.5. W.p.1, Brownian motion {Bt}0≤t≤1 is not differentiable at t for all t ∈ [0, 1].

Proof. Suppose event EM = {∃t ∈ [0, 1] such that |B′t| ≤M} holds, then by continuity there exists
ε s.t. |s− t| < ε implies |Bt −Bs| < 2Mε. Then if |s− t|, |s′ − t| < ε, then |Bs −Bs′ | ≤ 4Mε. For
large enough n, this means that there exists k ≤ n s.t.

AM,n


∣∣B(k+1)/n −Bk/n

∣∣ ≤ 4M/n∣∣B(k+2)/n −B(k+1)/n

∣∣ ≤ 4M/n∣∣B(k+3)/n −B(k+2)/n

∣∣ ≤ 4M/n

.

To show that the countable union P(∪M≥1EM ) = 0, it suffices to show that P(EM ) = 0. Observe
that P(EM ) ≤ P{∃k ≤ n : AM,n}, so it suffices to show that limn→∞ P(AM,n) = 0. Exactly,

P(AM,n) = P

 min
0≤k≤n−1

max


∣∣B(k+1)/n −Bk/n

∣∣,∣∣B(k+2)/n −B(k+1)/n

∣∣,∣∣B(k+3)/n −B(k+2)/n

∣∣ } ≤ 4M/n




≤
n−1∑
k=0

P

max


∣∣B(k+1)/n −Bk/n

∣∣,∣∣B(k+2)/n −B(k+1)/n

∣∣,∣∣B(k+3)/n −B(k+2)/n

∣∣ } ≤ 4M/n


= nP

{
max{

∣∣B1/n

∣∣, ∣∣B2/n −B1/n

∣∣, ∣∣B3/n −B2/n

∣∣} ≤ 4M/n
}

= n[P{
∣∣B1/n ≤ 4M/n

∣∣}]3
= n[P{

∣∣√nB1/n ≤ 4M/
√
n
∣∣}]3

= n

[∫ 4M/
√
n

0
e−x

2/2dx/
√

2π

]3

≤ CM3n/(
√
n)3 → 0

as n→∞.

Remark. Proposition 1.5 is stronger than: for any t ∈ [0, 1], Bt is not differentiable at t w.p.1.

The natural filtration for Brownian motion is Ft = σ{Bs : s ≤ t}. We say a process Bt is adapted
to a filtration {Ft : t ≥ 0} if for Bt is Ft-measurable for each t. Recall that a martingale w.r.t.
Ft is an Ft-adapted process such that E(|Mt|) <∞ for any t and E(Mt|Fs) = Ms for any s < t. A
martingale is continuous (not merely continuous-time!) if t 7→ Mt is a continuous function w.p.1.
Observe that the standard Brownian motion is a continuous martingale:

E(Bt|Fs) = E(Bs + (Bt −Bs)|Fs) = E(Bs|Fs) + E((Bt −Bs)|Fs) = Bs + E(Bt −Bs) = Bs.

A random variables T : Ω → [0,∞] is a stopping time w.r.t. {Ft} if {T ≤ t} ∈ Ft for all t ≥ 0.
Also define FT = σ{A : A ∩ {T ≤ t} ∈ Ft for all t}.

Proposition 2.6 (reflection principle). Let Bt be a Brownian motion with drift µ = 0, then for
any a > 0, P{max0≤s≤tBs ≥ a} = 2P{Bt ≥ a}.

Proof. Let Ta = min{s : Bs ≥ a} = min{s : Bs = a}, then P{max0≥s≥tBs ≥ a} = P{Ta ≤ t} =
P{Ta < t}. Also P{Bt ≥ a|t > Ta} = 1/2, hence

P{Bt ≥ a} = P{Ta < t}P{Bt ≥ a|Ta < t} = P{Ta < t}/2.

3



Proposition 2.7 (weak Markov property). Let Bt be a Brownian motion and Ys = Bs+t − Bt,
then {Ys : s ≥ 0} is a Brownian motion with the same µ and σ2 as Bt, and is independent of
Ft = σ{Bs : s ≥ t}.

Proposition 2.8 (strong Markov property). Let Bt be a BM(µ, σ2) and τ a stopping time w.r.t the
filtration {σ(Bt)}. Suppose that P{τ <∞} = 1. Then Yt = Bt+τ −Bτ is a BM(µ, σ2) independent
of σ{Bt : t ∈ [0, τ ]}.

Proposition 2.9. Let Bt be a Brownian motion and T be a stopping time all w.r.t. {Ft}. Suppose
that P{T ≤ ∞} = 1. Let Yt = Bt+T − BT for 0 ≤ t <∞. Then Yt is a Brownian motion with the
same µ and σ2, and is independent of Ft.

Example. We wish to find q(r, s) = P{Bt = 0 for some t ∈ [r, s]} where Bt is a standard Brownian
motion.

Lemma 2.10. Let A1, A2, · · · be events and Fn = σ{A1, · · · , An}. Suppose that there exists bn > 0
such that

∑
n≥1 bn =∞ and P(An+1|Fn) ≥ bn for any n. Then An occurs infinitely often.

Remark. This lemma generalizes the Borel-Cantelli lemma: if A1, A2, · · · are independent events
and

∑
n≥1 P(An) =∞ then An occurs infinitely often.

Proposition 2.11 (law of iterated logarithm). Let Bt be a standard BM. Then w.p.1,

lim sup
t→∞

Bt/
√

2t log log t = 1.

Proof. We first show that lim supt→∞Bt/
√
t log log t ≤

√
2 w.p.1. It suffices to show that for any

ε > 0 w.p.1 for all t sufficiently large, Bt ≤
√

2(1 + ε)t log log t. We use a trick called geometric
scaling. Let ρ > 1 and Aε,ρn = {Bt ≥

√
2(1 + ε)t log log t for some ρn−1 ≤ t ≤ ρn}. By Borel-

Cantelli lemma, it suffices to show that for any ε > 0 there exists ρ > 1 such that
∑

n≥1 P(Aε,ρn ) <∞.
By the reflection principle,

P(Aε,ρn ) ≤ P

{
sup

0≤t≤ρn
Bt ≥

√
2(1 + ε)ρn−1 log log ρn−1

}
≤ 2P

{
Bρn ≥

√
2(1 + ε)ρn−1 log log ρn−1

}
= 2P

{
Bρn/

√
ρn ≥

√
2(1 + ε)(log(n− 1) + log log ρ)/ρ

}
= Cρ(n− 1)−(1+ε)/ρ

for some constant Cρ depending on ρ. It suffices to take ρ so that (1+ε)/ρ > 1 to make it summable.

For the other side of the inequality, we will show that for any ε > 0 there exists ρ > 1 such that
lim supn→∞Bqn/

√
2(1− ε)ρn log log ρn ≥ 1 w.p.1. Let An = {|Bqn | ≥

√
2(1− ε)ρn log log ρn}.

Since P(An|Fn−1) ≥ P{Bρn − Bρn−1 ≥
√

2(1− ε)ρn log log ρn}/2 = P(Ãn)/2, where Fn−1 =

σ{A1, · · · , An−1}, by the previous lemma it suffices to show that
∑

n≥1 P(Ãn) = ∞. Observe
that

P(Ãn) = P
{

(Bρn −Bρn−1)/
√
ρn − ρn−1 ≥

√
2(1− ε)ρ(log n+ log log ρ)/(ρ− 1)

}
≥ Cε,ρ exp{−(1− ε)ρ(log n+ log log ρ)/(ρ− 1)}/

√
2(1− ε)ρ(log n+ log log ρ)/(ρ− 1)

≥ C ′ε,ρn−(1−ε)ρ/(ρ−1)/
√

log n.

Again, take ρε large enough so that (1− ε)ρ/(ρ− 1) < 1 to make unsummable.
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Remark. The common strategy in proving these statements is to use Borel-Cantelli lemma first.
We often need some scaling and to investigate the difference of Brownian paths (Bρn−Bρn−1) Then
to bound the probability of individual events, use tools like reflection principle and take integration
of the Gaussian variable.

Let Bt be a standard BM, the zero set of it is Zt = {s ∈ [0, t] : Bs = 0}. We write Z = Z∞. A
point s ∈ Zt is right-isolated if there exists ε > 0 such that r 6∈ Z for r ∈ (s, s+ ε). A point in Zt
is isolated if it is both left- and right-isolated.

Proposition 2.12. We make the following observations:

(i) 0 ∈ Zt;

(ii) Zt is closed for any t;

(iii) 0 is not right isolated;

(iv) Z is unbounded;

(v) Z has no isolated points.

Proof. (i)-(iii) is immediate. To prove (iv), we use intermediate value theorem together with, say,
the law of iterated logarithm. Alternatively we can use the inverse ....

For (v),

2.3 Quadratic variation of BM

2.4 Dimension of BM

2.5 BM in Rd

Definition. Let B1
t , · · · , Bd

t be a sequence of independent (1-dimensional) standard BMs, then
Bt = (B1

t , · · · , Bd
t ) is a standard d-dimensional BM.

Lemma 2.13. For standard d-dimensional BM Bt, the following holds:

(i) Bt = 0;

(ii) if s < t, then Bt −Bs is independent of Fs;

(iii) (Bt −Bs) ∼ N(0, (t− s)I) where I is the identity matrix, and the density is given by

f(x1, · · · , xn) =
d∏
j=1

(2π(t− s))−1/2 exp

{
−x2

j

2(t− s)

}
= (2π(t− s))−d/2 exp

{
−
∣∣x2
∣∣

2(t− s)

}
;

if Bt has drift µ and covariance matrix Γ, then (Bt −Bs) ∼ N((t− s)µ, (t− s)Γ) instead;

(iv) w.p.1 t 7→ Bt is continuous;

(v) Yt = µt+ABt is a BM with drift µ and covariance matrix AAT for µ ∈ Rd and A ∈Md(R).
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2.6 BM as martingales

Let Mt be a continuous martingale and τ a stopping time, both adapted to the filtration {Ft}. Let
M̂t = Mt∧τ and suppose that P{τ < ∞} = 1. Then M̂∞ = Mτ , and E(M0) = E(M̂) for every t.
The optional stopping theorem says that if limt→∞E(M̂t) = E(M̂∞), then E(Mτ ) = E(M0).

Example (gambler’s ruin for BM). Let Bt be a standard BM and τ = inf{t : Bt = a or Bt = −b}
be the stopping time. Then P{T < ∞} = 1 by the recurrence property of BM, and E(B0) = 0.
Since E(Bτ ) = limt→∞E(Bt∧τ ) by the dominating convergence theorem, we get 0 = E(Bτ ) =
aP{Bτ = a} − bP{Bτ = −b} which solves to P{Bτ = a} = b/(a+ b) and P{Bτ = −b} = a/(a+ b).

2.7 Harmonic functions in Rd

Let D be a connected open subset of Rd and z ∈ D a point with dist(z, ∂D) > ε. Define the
(spherical) mean value of f on the sphere Bε(z) of radius ε about z:

MV(f, z, ε) =

∫
|ω−z|=ε

f(ω) ds(ω)

where s is the surface measure (constant times the surface area) normalized s.t. MV(1, z, ε) = 1.
A function f : D → R is harmonic if it is continuous and satisfies the mean value property :
MV (f, z, ε) = f(z) for every z ∈ D with dist(z, ∂D) > ε.

Let ∆f =
∑d

j=1 ∂
2f/∂x2

j be the Laplacian of f , then a function f : D → R is harmonic iff it is C2

and ∆f(z) = 0 for all z ∈ D. When dimension d = 1, then harmonic is equivalent to linear, but
when d > 1 the class of harmonic functions is larger.

2.8 Dirichlet problem

The Dirichlet problem asks: let D ⊂ Rd be a bounded domain and F : ∂D → R a continuous
function, can we find an extension f : D → R of F such that:

(i) f = F on ∂D;

(ii) f is continuous on D;

(iii) ∆f(x) = 0 for all x ∈ D.

We first show that if exists, such f is unique:

Let Bt be a d-dimensional BM and τ = inf{t ≥ 0 : Bt ∈ ∂D}. Define f(x) = Ex[F (Bτ )], then f(x)
is harmonic and continuous on D, and satisfies f = F on ∂D. The only thing missing from f being
a solution to the Dirichlet problem is the continuity on ∂D. It turns out, f is only continuous on
all the regular points z ∈ ∂D.

Let Xt be a (time-homogeneous) Markov process taking values in Rd, the infinitesimal generator
L is the operator is defined by

Lg(x) = lim
t↓0

Ex[g(Xt)]− g(x)

t
.

Proposition 2.14. Let Bt be a standard BM in Rd and f a C2 function (that does not grow too
fast at ∞), then Lf(x) = ∆f(x)/2.
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Proof. WLOG assume that x = 0 and f(0) = 0. Since f is C2, the Taylor expansion gives

f(Bt) =
d∑
j=1

∂jf(0)Bj
t +

1

2

d∑
j=1

d∑
k=1

∂jkf(0)Bj
tB

k
t + o(|Bt|2).

Hence Lf(x) = limt↓0(Ex[f(Bt)]− f(x))/t =?.

Remark. If the BM Bt has mean µ ∈ Rd and covariance matrix Γ, then

Lf(x) =
d∑
j=1

µj∂jf(x) +
1

2

d∑
j=1

d∑
k=1

∂jkf(x)Γjk

Proposition 2.15. Let Bt be a standard d-dimensional BM and f : Rd → R be bounded. Then for
t > 0, ϕ(t, x) = Ex[f(Bt)] satisfies the heat equation

∂tϕ(t, x) =
1

2
∆xϕ(t, x).

Proof. A Brownian motion Bt starting at x has density pt(x, y) = (2πt)−d/2e−|y−x|
2/2t, where

∂tpt = ∆xpt(x, y)/2. Since f is bounded, we can exchange integral and derivative:

∂tϕ(t, x) = ∂t

∫
Rd

f(y)pt(x, y) dy

=

∫
Rd

f(y)∂tpt(x, y) dy

=
1

2

∫
Rd

f(y)∆xpt(x, y) dy

=
1

2
∆x

∫
Rd

f(y)pt(x, y) dy =
1

2
∆xϕ(t, x).

Let Bt be a standard d-dimensional BM. For d ≥ 3, the Green’s function G(x, y) is defined by

G(x, y) = lim
ε↓0

Ex

[
1

Vε

∫ ∞
0

1{|Bt−y|≤ε} dt

]
= lim

ε↓0

1

Vε

∫ ∞
0

∫
|y−z|≤ε

pt(x, z) dzdt

=

∫ ∞
0

pt(x, y) dt

=

∫ ∞
0

1

(2πt)d/2
exp

{
−|y − x|2

2t

}
dt =

Γ(d/2− 1)

2πd/2
|x− y|2−d,

where Vε is the (d-dimensional) volume of the ε-ball. Intuitively, G(x, y) represents the expected
amount of times spent in y of a standard Brownian motion starting at x. gy(x) = G(x, y) is
harmonic for x 6= y. Also define

G(x) =

∫ ∞
0

1

(2πt)d/2
exp

{
−|x|2

2t

}
dt

and GD(x, y) to be the expected amount of time spent in y before leaving D of a standard BM
starting at x. Then G(x, y) = GD(x, y) + Ex[G(Bτ , y)] where τ = inf{t : Bt ∈ ∂D}.
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Proposition 2.16. Let g(y) = GD(x, y), then

(i) g is harmonic on D \ {x};

(ii) g(y)→ 0 for y → z ∈ ∂D and z regular;

(iii) GD(x, y) = GD(y, x).

For d ≤ 2, the recurrence property of BM makes G(x) = ∞. Hence we redefine, for d = 2, the
potential kernel

G(x) =

∫ ∞
0

[pt(0, z)− pt(o, x)] dt =

∫ ∞
0

1

2πt

[
e−1/2t − e−|x|

2/2t
]
dt = − 1

π
log |x|

where we take z = (0, 1). This is a radially symmetric harmonic function on R2 \ {0}, and carries
the intuitive meaning of “time spent in x compared to the time spent on the unit circle. Hence

G(x) = 0 for |x| = 1. When t is large, e−1/2t − e−|x|
2/2t = |x|2−1

2t + O(1/t2), hence G(x) < ∞ for
x 6= 0. If we choose z 6= (0, 1), then G(x) will differ from − log |x|/π by a constant.

Proposition 2.16 still works for this GD(x, y) defined as such in d = 2, where

GD(x, y) = Ex

[
log |Bτ − z|

π

]
− log |x− z|

π
.

Let D ⊂ R2 be a bounded domain. Let GD(x, y) =
∫∞

0 pDt (x, y) dt where pDt (x, y) is the density of
BM starting at x and killed when reaching the boundary, then for f : D → R a continuous function,

Ex
[
f(Bt)1{t<T}

]
=

∫
D
pDt (x, y)f(y) dy.

Also, pDt (x, y) satisfies the heat equation: ∂tp
D
t (x, y) = ∆xp

D
t (x, y)/2, and pDt (x, y) = pDt (y, x). We

say that pDt (x, y) is the solution to the heat equation with initial condition p0(x, y) = δxy. Also

pDt (x, y) = pt(x, y)−Ex
[
pt−τ (Bτ , y)1{t>T}

]
.
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3 Stochastic Calculus

3.1 Construction

Consider the differential equation
dXt = Rt dt+At dBt

where Bt is a BM, and Xt and Rt are random variables. This equation carries the meaning “at
time t, Xt looks locally like a BM(Rt, A

2
t ). We can not differentiate both sides by dt since BM is

non-differentiable. But we can consider

Xt = X0 +

∫ t

0
Rs ds+

∫ t

0
As dBs.

It remains to make sense of the last term.

A {Ft}-adapted-process At is simple if there exists 0 = t0 < t1 < · · · < tn = ∞ and L2-random
variables Y0, · · · , Yn such that Yj is Ftj -measurable and At = Yj for t ∈ [tj , tj+1).

Let Bt be a Let Bt be a standard BM and At be a Ft-adapted standard BM. The (Itô) stochastic
integral of At is defined by

Zt =

∫ t

0
As dBs =

j−1∑
i=o

Yi(Bti+1 −Bti) + Yj(Bt −Btj )

for t ∈ [tj , tj+1].

Proposition 3.1. The stochastic integral defined satisfies the following properties:

(i) Zt is adapted to {Ft};

(ii) (linearity) let a and b be constants, and Ct be a simple process, then∫ t

0
(aAs + bCs) dBs = a

∫ t

0
As dBs + b

∫ t

0
Cs dBs;

also if r ∈ [0, t], then ∫ t

0
As dBs =

∫ r

0
As dBs +

∫ t

r
As dBs;

(iii) (martingale) Zt is an L2-martingale;

(iv) (variance isometry)

Var(Zt) = E(Z2
t ) =

∫ t

0
E(A2

s) dBs;

(v) (continuity) w.p.1, t 7→ Zt is a continuous function.

Proof. f

Proposition 3.2. Let At be a bounded, continuous, and {Ft}-adapted process. Then for any t0,

there exists a sequence of bounded simple processes A
(n)
t converging to At in the sense that

lim
n→∞

E

[∫ t0

0
(At −A(n)

t )2 dt

]
= 0.

9



Hence we extend the definition of stochastic integral for bounded continuous (adapted) process At:

Zt =

∫ t

0
As dBs = lim

n→∞

∫ t

0
A(n)
s dBs.

Remark. properties, continuity

A {Ft}-adapted process As(ω) is progressively measurable if As(ω) is measurable in B([0, t])⊗Ft
measurable for s ∈ [0, t].

3.2 Itô’s formula

Proposition 3.3 (Itô’s formula). Let Bt be a standard BM and f : R→ R be C2, then for every t,

f(Bt)− f(B0) =

∫ t

0
f ′(Bs) dBs +

1

2

∫ t

0
f ′′(Bs) ds. (∗)

Proof. Since both sides of (∗) are continuous, it suffices to show (∗) for dyadics t ∈ D. We do the
case for t = 1, the other t ∈ D will be similar. Let 0 = t0 < t1 < · · · < tn = 1 be a partition. Then

f(Bt)− f(B0) =

n∑
j=1

(
f(Btj )− f(Btj−1)

)
.

Assume that there exists C <∞ such that |f ′′| < C. By Taylor expansion, we have

1

2
mj,n(Btj −Btj−1)2 ≤

∣∣f(Btj )− f(Btj−1)− f ′(Btj−1)(Btj −Btj−1)
∣∣ ≤ 1

2
Mj,n(Btj −Btj−1)2

where Mj,n = supz∈[Btj−1 ,Btj ] f
′′(z) and mj,n = infz∈[Btj−1 ,Btj ] f

′′(z). Refine the partition so that

n∑
j=1

f ′(Btj−1)(Btj −Btj1 )→
∫ 1

0
f ′(Bs) dBs, and

n∑
j=1

1

2
mj,n(Btj −Btj−1)2,

n∑
j=1

1

2
Mj,n(Btj −Btj−1)2 → 1

2

∫ 1

0
f ′′(Bs) ds.

If |f | is not bounded, then let TK = inf{t : |f ′′(Bt)| ≥ K}. Then Itô’s formula holds for t ∧ TK .
Now let K →∞.

Remark. Itô’s formula is often written in the differential form:

df(Bt) = f ′(Bt) dBt +
1

2
f ′′(Bt) dt.

Intuitively, the process Yt = f(Bt) evolves like a Brownian motion with drift f ′′(Bt)/2 and variance
f ′(Bt)

2 locally at time t.

Proposition 3.4 (Itô’s formula, II). Let f(t, x) be C1 in t and C2 in x, then

f(t, Bt)− f(0, B0) =

∫ t

0

(
∂tf(s,Bs) +

1

2
∂2
xf(s,Bs)

)
ds+

∫ t

0
∂xf(s,Bs) dBs

10



Proof. Again, it suffices to show for t = 1. Observe that

f(tj , Btj )− f(tj−1, Btj−1) = f(tj , Btj )− f(tj−1, Btj ) + f(tj−1, Btj )− f(tj−1, Btj−1).

Hence taking sum and refining the partition

n∑
j=1

f(tj , Btj )− f(tj−1, Btj−1) =
n∑
j=1

∂tf(tj , Btj )(tj − tj−1) + ...

Let f(t, x) = eat+bx and Xt = f(t, Bt), then

dXt = Xt

[(
a+

b2

2

)
dt+ b dBt

]
.

Hence solution to the SDE dXt = Xt(µdt+ b dBt is the geometric Brownian motion

Xt = X0 exp{(µ− σ2/2)t+ σBt}.

Proposition 3.5. Let {Xt}0≤t≤1 be a process satisfying dXt = Rt dt+ At dBt, then the quadratic
variation

〈X〉t = lim
n→∞

n∑
j=1

(
Xjt/n −X(j−1)t/n

)2
of Xt is given by〈∫ t

0
As dBs

〉
= lim

n→∞

n∑
j=1

(∫ tj/n

0
As dBs

)2

= lim
n→∞

n∑
j=1

∫ tj/n

0
A2
s dBs.

We write d〈X〉t = A2
t dt.

Proof. Let j = 1, then

(Xt/n −X0)2 =

(∫ t/n

0
Rs ds+

∫ t/n

0
As dBs

)2

=

(∫ t/n

0
Rs ds

)2

+ 2

(∫ t/n

0
Rs ds

)(∫ t/n

0
As dBs

)
+

(∫ t/n

0
As dBs

)2

= O(1/n2) +O(1/n)O(1/
√
n) +O(1/n).

There are n terms of this form in the sum. Hence as n→∞ the only term contributing to the sum
is the last term of order O(1/n).

Proposition 3.6 (Itô’s formula (III)). Let Xt be the process that satisfies dXt = Rt dt + At dBt.
Let f(t, x) be C1 in t and C2 in x. Then

df(t.Xt) = ∂tf(t,Xt) dt+ ∂xf(t,Xt) dXt +
1

2
∂2
xxf(t,Xt) d〈X〉t

=

(
∂tf(t,Xt) +Rt∂xf(t,Xt) +

1

2
A2
t∂

2
xxf(t,Xt)

)
dt+At∂xf(t,Xt) dBt.
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Diffusion

A diffusion process Xt is a process satisfying

dXt = m(t,Xt) dt+ σ(t,Xt) dBt (∗)

with certain initial condition X0 = x0. We can simulate a diffusion process using stochastic Euler’s
method: take x0 = 0 and small ∆t ad define recursively

X(k+1)∆t = Xk∆t +m(k∆t,Xk∆t)∆t+ σ(k∆t,Xk∆t)
√

∆tN,

where N ∼ N(0, 1). Suppose f is nice enough (exchanging limit and integral) so that the generator

Lf(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t

is defined. For simplicity assume time homogeneity (m(t, x) = m(x) and σ(t, x) = σ(x)) with σ
and m both continuous and bounded. By Itô’s formula

Ex[f(Xt)] = E

[∫ t

0

(
m(Xs)f

′(Xs) +
1

2
σ2(Xs)f

′′(Xs)

)
ds+

∫ t

0
σ(Xs)f

′(Xs) dBt

]
.

The last term is a martingale with expectation 0. Hence the generator is given by

Lf(x) = m(x)f ′(x) +
1

2
σ2(x)f ′′(x).

Now we want to solve the SDE given by (∗) with initial condition X0 = x0 to show that diffusion
process Xt actually exists, under the assumption that m and σ are uniformly Lipschitz in x:

|m(t, x)−m(t, y)| ≤ β|x− y| and |σ(t, x)− σ(t, y)| ≤ β|x− y|

for some β > 0. We use the stochastic version of Picard iteration method from ODE. Let X
(0)
t = x0

and define recursively

X
(n+1)
t = x0 +

∫ t

0
m(s,X(n)

s ) ds+

∫ t

0
σ(s,X(m)

s ) dBs.

For simplicity assume 0 ≤ t ≤ 1. We want to show that the L2-norm is bounded:

E

[∣∣∣X(n+1)
t −X(n)

t

∣∣∣2] ≤ Cβ2ntn+1

(n+ 1)!
, (∗∗)

so that the L2-limit Xt = limn→∞X
(n)
t exists for each t. We can choose t ∈ D∩ [0, 1] first and then

extend it. Fix t, we show (∗∗) by induction:

LHS ≤ 2E

[(∫ t

0

(
m(X(n)

s )−m(X(n−1)
s )

)
ds

)2
]

+ 2E

[(∫ t

0

(
σ(X(n)

s )− σ(X(n−1)
s )

)
dBs

)2
]

≤ 2E

[∫ t

0

(
m(X(n)

s )−m(X(n−1)
s )

)2
ds

]
+ 2E

[∫ t

0

(
σ(X(n)

s )− σ(X(n−1)
s )

)2
dBs

]
≤ 4E

[∫ t

0
β2
∣∣∣X(n)

s −X(n−1)
s

∣∣∣2 ds]
≤ 4β2

∫ t

0
C
β2(n−1)sn

n!
ds = C

β2ntn+1

(n+ 1)!
.
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A particular example of diffusion process is Bessel process Xt which satisfies

dXt =
a

Xt
dt+ dBt

for 0 ≤ t < T = min{t : Xt = 0}, where a ∈ R and X0 = x0 > 0.

Proposition 3.7 (product rule). Let dXt = Rt dt+At dBt and dYt = St dt+Ct dBt, then d(XtYt) =
Xt dYt + Yt dXt + d〈X,Y 〉t, where the covariation term

〈X,Y 〉t = lim
n→∞

∑
j≤nt

(Xj/n −X(j−1)/n)(Yj/n − Y(j−1)/n) =

∫ t

0
AsCs ds.

Proof. Sketch.

Xt+∆tYt+∆t −XtYt = (Xt+∆t −Xt)Yt+∆t +XtYt+∆t −XtYt

= (Xt+∆t −Xt)Yt + (Xt+∆t −Xt)(Yt+∆t − Yt) +Xt(Yt+∆t − Yt)
≈ Yt dXt + d(Xt)d(Yt) +Xt dYt

where d(Xt)d(Yt) is nonzero. As for the covariation, notice that (dBt)
2 ≈ dt.

In higher dimensions

Let Bt = (B1
t , · · · , Bd

t ) be a d-dimensional BM and Xt = (X1
t , · · · , Xn

t ) a vector process satisfying

dXj
t = Rjt dt+

d∑
k=1

Aj,kt dBk
t .

Since we have 〈Bj , Bk〉t = 0 for j 6= k and 〈Bj , Bk〉t = t when j = k, we have

〈Xj〉t =
d∑

k=1

∫ t

0
(Aj,ks )2 ds, and 〈Xj , Xk〉t =

t∑
i=1

Aj,is A
k,i
s ds.

Proposition 3.8 (Itô’ formula, final form). Suppose the vector process Xt = (X1
t , · · · , Xn

t ) satisfies

dXj
t = Rjt dt+

d∑
k=1

Aj,kt dBk
t .

Let f(t, x) : [0,∞)× Rn → R be C1 in t and C2 in x. Then

f(t,Xt) = f(0, X0) +

∫ t

0
∂tf(s,Xs) ds+

n∑
j=1

∫ t

0
∂jf(s,Xs) dX

j
s +

1

2

k∑
j=1

n∑
k=1

∂2
jkf(s,Xs) d〈Xj , Xk〉s.

In particular if n = d and Xt = Bt, then

df(t, Bt) = ∇xf(t, Bt) · dBt +

[
∂tf(t, Bt) +

1

2
∆xf(t, Bt)

]
dt

13



Some applications

Martingale betting strategy, arbitrage: we want the process to reach value 1 at time t = 1. If it
reaches 1 at t = 1/2 we simply stops betting. If it does not reach 1 at t = 1/2, then we bet more
dollars so that the variance is big, and there is a positive probability or reaching 1 at t = 3/4.
Repeat the observation at t = 3/4. The moral is: in a continuous-time setting we can always ”win”
within a given time, because we can bet infinitely many times.

European option: Let T (deterministic) be the call time and K be the strike price. Suppose the
stock (asset) price Xt is a diffusion process

dXt = m(t,Xt) dt+ σ(t,Xt) dBt.

The value of the option at time T is F (XT ) = (XT −K)∨ 0. Let r(t, x) be the interest (bond) rate
and

Rt = exp

{∫ t

0
r(s,Xs) ds

}
.

One dollar now (t = 0) will be promised to value Rt dollars in the future at time t. Then

ϕ(t, x) = E

[
exp

{
−
∫ T

t
r(s,Xs) ds

}
F (XT ) | Xt = x

]
= E [(Rt/RT )F (XT ) | Xt = x]

is a martingale since
Mt = E

[
R−1
T F (XT ) | Ft

]
= R−1

T ϕ(t, x)

is a martingale.

Change of measure

Let (Ω,F ,P) be the probability space. Let Bt be a standard Brownian motion. Suppose that Mt

satisfies dMt = AtMt dBt and M0 = 1. Then Mt = eYt is a only local martingale, where

Yt =

∫ t

0
As dBs −

1

2

∫ t

0
A2
s ds

by Itô’s formula. Let Tn = inf{t : Mt = n or 〈M〉t = n} and T = limn→∞ Tn. Then Mt∧Tn is a
nonnegative martingale. Now let Mt be a nonnegative martingale. Define probability measure P∗
by P∗t (V ) = E[Mt1V ] for V ∈ Ft. That is, Mt is the Radon-Nikodym derivative dP∗/dP.

Lemma 3.9. If one of the following holds, then Ms is a martingale for 0 ≤ s ≤ t:

(i) E(Mt) = 1;

(ii) P∗{T > t} = 1;

(iii) (Novikov’s condition) E[exp{〈Y 〉t/2}] <∞.

Theorem 3.10 (Girsanov’s theorem). If Mt is a nonnegative martingale, then dBt = At dt+ dWt

for t < T , where Wt is a standard Brownian motion with respect to P∗.

Proof. Firstly, W0 = 0 and t 7→ Wt is continuous. Since P∗ � P on Ft, we have 〈W 〉t = t. Hence
by, it suffices to show that Wt is a P∗-martingale.

Remark. Heuristics of Girsanov’s theorem
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Example (Brownian motion tilted by B1
t ). Let Mt = Bt and B0 = 1. Then Mt is a martingale

and dMt = B−1
t Mt dBt. Apply Girsanov’s theorem we see that for t < T , dBt = B−1

t dt + dWt.
Hence Bt is a Bessel process with a = 1. Hence for fixed t, with P∗-probability 1, 0 < Bs < ∞
for 0 ≤ s ≤ t and T = ∞. But with respect to P, Bs may reach 0. We have tilted the Brownian
motion so that the weight of paths reaching 0 is 0.

Example (Brownian motion tilted by Br
t ). Let Xt = Br

t and Bt = 1. Then Mt is a martingale
and satisfies

dXt = rBr−1
t dBt +

r(r − 1)

2
Br−2
t dt =

(
r

Bt
dBt +

r(r − 1)

2B2
t

dt

)
Br
t

by Itô’s formula. We use the following trick to get rid of the drift term: let Mt = CtXt where

Ct = exp

{
−
∫ t

o

r(r − 1)

2B2
s

ds

}
.

Then use product rule and the fact that 〈C,X〉t = 0 to conclude that dMt = rB−1
t Mt dBt. Apply

Girsanov’s theorem, we see that Bt is a Bessel process with a = r. When r ≥ 1/2, Mt is a
martingale since P∗{T =∞} = 1.

Let dXt = Xt(mdt + σ dBt) where m = m(t,Xt) and σ = σ(t,Xt). We want to find a measure
P∗ under which the drift term disappears and Xt is a martingale. It suffices to show that dBt =
−(m/σ) dt+ dWt, where Wt is a standard Brownian motion under P∗. Let dMt = (−m/σ)Mt dBt.
To use Girsanov’s theorem, we need that Mt = eYt is a nonnegative martingale.

Claim: Mt is a martingale if E(Mt) = 1.

f

Application to finance

Classification of Lévy process

A process {Xt}t≥0 is a Lévy process if

(i) it has independent, identically distributed increments, and

(ii) Xt → X0 is probability as t ↓ 0.

For example, Brownian motion (m,σ2) and Poisson process (λ) are Lévy processes.

An example of Lévy process with discontinuous paths is Ta = inf{t : Bt = a} for Bt a standard
Brownian motion. It has density at−3/2(2π)−1/2 exp

{
−a2/2t

}
. It does not have continuous path,

for let a = max{Bt : t ∈ [0, 1]}, then limε↓0 Ta+ε 6= Ta. Similarly, let Bt = (B1
t , B

2
t ) be a standard

2-dimensional Brownian motion. Then Ys = B1
Ts

is a Lévy process with Cauchy distribution
s−1π(x2 + s2), where Ts = min{t : B2

t = s}. It does not have continuous paths. It turns out that
Brownian motion is the only Lévy process with continuous paths.

Our goal is to classify all Lévy process.

A random variable X has infinitely divisible distribution if for any n ∈ Z+ we can find a
sequence of independent, identically distributed Y1, · · · , Yn such that X = Y1 + · · ·+ Yn in law.

Lemma 3.11. If Xt is a Lévy process, then Xt has an infinitely divisible distribution for each t.
Conversely, for any infinitely divisible distribution F , there is a Lévy process Xt such that X1 has
distribution F .

Proof. Write Xt =
∑n

j=1(Xjt/n −X(j−1)t/n) as a telescoping sum. For the converse,
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Exercise from Wednesday Class (Due this week)

Let D ⊂ R2 be a bounded, simply connected domain containing the origin 0 and D̂ = D \ {0}.
Let Bt be a standard Brownian motion starting at B0 = x ∈ D̂. Let Ts = inf{t : |Bt| ≤ e−s},
T = inf{t : Bt = 0}, and τ = inf{t : Bt 6∈ D}.

(i) Let G(x) = lims→∞ sPx{Ts < τ}. Show that 0 < G(x) <∞ for x ∈ D̂.

Suppose D is contained in a circle C of radius R around the origin, then

Px{Ts < τ} ≤ Px{Ts < τR} =
logR− log |x|
logR− log e−s

,

where τR = inf{t : Bt 6∈ C}. Hence lim sups→∞ sPx{Ts < τ} ≤ logR+ log(1/|x|) <∞.

On the other hand, suppose D contains a circle c of radius r around the origin, then

Px{Ts < τ} = Px{τ ′ < τ}P
r
2 {Ts < τ} ≥ Px{τ ′ < τ}P

r
2 {Ts < τr} = K

log r − log(r/2)

log r − log e−s
,

where K = Px{τ ′ < τ}, τ ′ = {t : |Bt| < r/2}, and τr = inf{t : Bt 6∈ c}. Hence

lim inf
s→∞

sPx{Ts < τ} ≥ lim inf
s→∞

sK
log r − log(r/2)

log r − log e−s
= K(log r − log(r/2)) > 0.

(Monotonicity)

(ii) Show that G is harmonic in D̂.

Choose any x ∈ D̂. Let ε < e−s and ε < |x|. Then

sPx{Ts < τ} = s

∫
|z−x|=ε

Pz{Ts < τ}ds

satisfies the mean-value property, where s is the normalized surface measure. By monotonicity
from part (i), we can exchange limit and integral. Hence G(x) = MV(G, x, ε) satisfies the
mean-value property, and is harmonic in D̂.

(iii) Show that if xn → z ∈ ∂D, then G(xn)→ 0.

(A conformal invariance argument)

(iv) Let Mt = G(Bt) for 0 ≤ t < t ∧ T . Show that Mt is a local martingale for t < T ∧ τ .

Use Itô’s formula: dMt = dG(Bt) = ∇G(Bt) · dBt + ∆G(Bt) dt/2 = ∆G(B)t · dBt, since G is
harmonic by part (ii). Hence Mt is a local martingale.

(v) Use Girsanov’s theorem to find a new probability measure under which T <∞ and T < τ .

(vi) Is Mt a martingale?
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Let {Mt}t≥0 be a nonnegative discrete-time martingale with M0 = 1. Let M∞ = limn→∞Mn. Let
Fn be the σ-algebra generated by {M0, · · · ,Mn}. Define measure Qn on Fn by Qn(V ) = E[Mn1V ]
for V ∈ Fn. Let Q be the measure that is equal to Qn when restricted to Fn. Show that if
Q{M∞ <∞} = 1 or Q{supnMn <∞} = 1, then E[M∞] = 1.
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