
Martingale Central Limit Theorem. Let {lNt =
∑t

n=1X
N
n : 1 ≤ t ≤ tN}N≥1 be an array of

zero-mean discrete martingales. Then lNtN → N(0, σ2) in law if

(i) [lN ]tN =
∑tN

n=1(X
N
n )2 → σ2 in probability, for some constant σ2, and

(ii) Emax1≤n≤tN
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Proof. We first modify the martingale while preserving (i) and (ii). We then define a product
martingale and work on it until we can apply Levy’s convergence theorem.

Step one. Without loss of generality suppose that supN{max1≤n≤tN

∣

∣XN
n

∣

∣} ≤ C for some constant
C > 0. Define stopping time

τN = tN ∧min{1 ≤ t ≤ tN : [lN ]t > σ2 + 1},

then P(τN 6= tN ) → 0 because of (i), and hence [lt∧τN ]tN → σ2.

Embed discrete martingale (lNt )1≤t≤tN into a continuous martingale (l̄Nt )1≤t≤tN with continuous
sample paths [Heath (1977)] and define similarly stopping time

σN = tN ∧min{1 ≤ t ≤ tN : |l̄Nt − l̄N⌊t⌋| ≥ C}.

By Jensen’s inequality and note that l̄N⌊σN ⌋ is predictable (measurable) at l̄NσN
,
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Hence by (ii)
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which implies that Emax1≤n≤tN
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→ 0. Now replace (lNt )1≤t≤tN by the modified

martingale (lN,C
t )1≤t≤tN = (l̄Nt∧σN∧τN

)1≤t≤tN which satisfies in addition to (i) and (ii),

(iii) [lN,C ]tN ≤ σ2 + 1 + C2 and
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for any N and n, where XN,C
n = lN,C

n − lN,C
n−1.

Step two. Construct product martingale mN,C
t (θ) =

∏t
n=1(1 + θXN,C

n ), then for |θ| < C−1 expand

complex logarithm to get logmN,C
tN

(θ) =
∑
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p-variation. Since max1≤n≤tN |XN,C
n | → 0 as N → ∞,
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in probability. Observe that lN,C
tN

is bounded in L2 as E(lN,C
tN

)2 = E[lN,C ]tN ≤ σ2 + 1 + C2, hence
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is uniformly integrable and thus tight. But [tN,C ]tN is also tight, hence θlN,C
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tight, and
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Let θ = ih where h ∈ R and |θ| = |h| < C−1. Similarly mN,C
tN

is bounded in L2 as
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is uniformly integrable, and from (∗),
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6= lNtN only when tN 6= τN or tN 6= σN , hence
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, and by Levy’s convergence theorem lNtN → N(0, σ2) in law
as desired.
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