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2 Homology

Homology is a covariant functor from the category of topological spaces with continuous maps to the
category of abelian groups with group homomorphisms, with chain complexes as an intermediate
step. The central property of homology groups, like the fundamental groups, is the homotopy
invariance. But homology groups are easier to compute than homotopy groups, in general.

2.1 Basic concepts

Simplicial homology is built from ∆-complex structures and cellular homology is built upon CW
complexes. These two homology theories are convenient in computation but require strict conditions
on the space. Singular homology built from singular simplices is most used in proofs for its flexibility,
but is less computable in general.

Simplicial homology A ∆-complex structure on space X is a collection of maps σn from the
standard n-simplices ∆n to X that decomposes X “nicely”, with appropriate topology. The chain
group is defined as ∆n(X) = F ab(σα), and the boundary map is ∂n : ∆n(X) → ∆n−1(X) by
σα 7→

∑
i(−1)iσα|[v0,··· ,v̂i,··· ,vn]. Check that ∂n∂n−1 = 0, and thus ∆.(X) forms a chain complex.

The corresponding homology groups H∆
. (X) are the simplicial homology groups.

To calculate simplicial homology we need to subdivide for a ∆-complex structure.

T2 :

v v

v v

b

a

b

U

L

c
a =⇒





2-simplices: σU , σL

1-simplices: σa, σb, σc

0-simplices: σv

Thus we obtain the chain complex and the corresponding homology groups:

0 ∆2(T
2) ∆1(T

2) ∆0(T
2) 0

Z2 Z3 Z

∂3 ∂2 ∂1 ∂0

⇒





H∆
2 (T2) = ker ∂2 ∼= Z

H∆
1 (T2) ∼= Z3/Z ∼= Z2

H∆
0 (T2) = H∆

3 (T2) = 0

.

Similarly, we can do this for RP2 and Klein bottle K.

Singular homology A singular n-simplex in X is a map σ : ∆n → X that need not be “nice”.
The singular chain group Cn(X) is the free abelian group generated by all singular n-simplices in X
with the same boundary map as before. Similarly C.(X) forms a chain complex with corresponding
singular homology groups H.(X).

For example, let X be nonempty and path-connected, then define augmented map ε : C0(X) → Z

by
∑

i niσi 7→
∑

i ni, which is surjective since X is nonempty. If we can show that ker ε = Im ∂1,
then H0(X) = ker ∂0/Im ∂1 = C0(X)/ ker ε ∼= Z. Im ∂1 ⊆ ker ε is easy, for the reverse inclusion
construct appropriate singular 1-simplex.

Sometimes we use reduced homology H̃ by attaching the augmented map ε, so that H̃n(X) = Hn(X)
for n > 0 and H̃0(X)⊕ Z = H0(X). Now H̃n(pt) = 0 for all n.
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For A ⊆ X, define Cn(X,A) = Cn(X)/Cn(A) to be the n-th relative chain group. With the natu-
rally inherited boundary map we obtain a complex, and thus relative homology groups H.(X,A).
It’s not hard to see that Hn(X,A) = H̃n(X,A) if A is nonempty, and Hn(X,A) = H̃n(X) for all n.

Now we’ve reached the heart of homology: homotopy invariance. For f : X → Y there is a chain
map f# : C.(X) → C.(Y ) by σ 7→ fσ, and since f#(∂σ) = ∂f#(σ), the chain ladder commutes.
Two chain maps f# and g# are homotopic if there exists hn : Cn(X) → Cn+1(Y ) such that
f# − g# = ∂′n+1hn + hn−1∂n for all n. Chain map f# induces f∗ : H.(X) → H.(Y ). As a functors,
(fg)# = f#g#, id# = id, and (fg)∗ = f∗g∗, id∗ = id.

· · · Cn(X) Cn−1(X) · · ·

· · · Cn(Y ) Cn−1(Y ) · · ·

hn

∂n

hn−1

∂n

· · · Cn(X) Cn−1(X)

Cn+1(Y ) Cn(Y ) · · ·

f# g#
hn

∂n

hn−1

∂′

n+1

Theorem 2.1. Let f, g : X → Y . If f ≃ g, then f# ≃ g#, and thus f∗ = g∗.

Proof. We split the proof into two steps:

f ≃ g ⇒ f# ≃ g#. Let i, i′ : X →֒ X × [0, 1] be the inclusions x 7→ (x, 0) and x 7→ (x, 1).
Let ∆n × {0} = [u0, · · · , un] and ∆n × {1} = [v0, · · · , vn], then we can subdivide ∆n × [0, 1] into
n + 1 (n + 1)-simplices of the form si = [u0, · · · , ui, vi, · · · , vn]. Define Pn =

∑
i(−1)isi, then by

calculation ∂Pn = ∆n×{1}−∆n×{0}−Pn(∂∆
n). Let hn : Cn(X) → Cn+1(Y ) by σ 7→ (σ×id)#(Pn)

where σ : ∆n → X. Check that i# ≃ i′# under h. Finally, notice that if f ≃ g by F , then f = Hi
and g = Hi′.

f# ≃ g# ⇒ f∗ = g∗. Let z ∈ ker ∂n, then f#(z) − g#(z) = (∂′n+1hn + hn−1∂n)(z) = (∂′n+1hn)(z)
which is in Im ∂′n+1, hence f∗([z]) = [f#(z)] = [g#(z)] = g∗([z]).

Cn(X) is a much bigger group then ∆n(X), but in terms of homology they are equivalent:

Theorem 2.2. Let X be equipped with a ∆-complex structure, then the inclusion ∆.(X) →֒ C.(X)
of chain complexes induces an isomorphism H∆

. (X) ∼= H.(X).

Proof. IfX is finite dimensional, then with excision and the fact thatHn(∆
n, ∂∆n) ∼= Z is generated

by identity maps idn : ∆n → ∆n, we find the same description ofH∆
n (Xk, Xk−1) andHn(X

k, Xk−1):
free abelian with basis the k-simplices of X when n = k and trivial otherwise.

H∆
n+1(X

k, Xk−1) H∆
n (Xk−1) H∆

n (Xk) H∆
n (Xk, Xk−1) H∆

n−1(X
k−1)

Hn+1(X
k, Xk−1) Hn(X

k−1) Hn(X
k) Hn(X

k, Xk−1) Hn−1(X
k−1)

induction induction

Apply the five lemma to the diagram above. If X is infinite-dimensional, we use the compactness
argument

Cellular homology CW structure is less strict then ∆-complex structure. Define cellular chain
group to be CCW

n (X) = Hn(X
n, Xn−1) = F ab(n-cells of X), and with boundary map dn = jn−1∂n
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we obtain a cellular chain complex:

0

Hn(X
n) Hn(X

n+1) ∼= Hn(X) 0

· · · Hn+1(X
n+1, Xn) Hn(X

n, Xn−1) Hn−1(X
n−1, Xn−2) · · ·

Hn−1(X
n−1)

0

jn
∂n+1

dn+1 dn

∂n
jn−1

.

The corresponding homology groups HCW
. (X) are the cellular homology groups.

Above we assumed the following observations when X is a CW-complex:

(i) Hn(X
k, Xk−1) ∼=

{⊕
Z (one for each n-cell of X), n = k

0, else
.

(ii) i∗ : Hk(X
k) → Hk(X) induced by i : Xk →֒ X is surjective.

(iii) Hn(X
k) ∼=

{
Hn(X) (induced by i : Xk →֒ X), n < k

0, n > k
.

(i) follows from Hn(X
k, Xk−1) ∼= H̃n(X

k/Xk−1) ∼= H̃n(∨iS
k) since (Xk, Xk−1) is a good pair. (ii)

and (iii) when X is finite-dimensional follows from considering the exact sequence of (Xk, Xk−1)
and induction on Hk(X

0) = 0 when k > 0. When X is infinite-dimensional recall that

Now we make explicit of the boundary maps dn, with the help of mapping degree.

Observe that dn+1 : Hn+1(X
n+1, Xn) → Hn(X

n, Xn−1) sends en+1
α 7→

∑
dαβe

n
β . The claim is that

dαβ = deg fαβ where fαβ = qβ ◦ ϕα, with ϕα : ∂Dn → X the attaching map and qβ : X → Sn
β

collapsing all of X except for enβ .

H̃n+1(D
n+1
α , ∂Dn+1

α ) H̃n(∂D
n+1
α ) H̃n(S

n
β)

H̃n+1(X
n+1, Xn) H̃n(X

n) H̃n(X
n/Xn−1)

H̃n(X
n, Xn−1)

Φα∗

∂

ϕα∗

fαβ∗

dn+1

∂

qβ∗

qβ1∗

qβ2∗

Take a generator [Dn+1] ∈ H̃n+1(D
n+1
α , ∂Dn+1

α ), ∂ sends it to a generator in H̃n(∂D
n+1
α ) which has

the image deg fαβ under fαβ∗. On the other hand, the characteristic map (extension of attaching
map) Φα∗ sends [Dn+1] to [en+1

α ], and dn+1 further sends it to
∑
dαβe

n
β , which projects to the βth

factor dαβ by qβ2∗. Since the diagram commutes, dαβ = deg fαβ .
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Theorem 2.3. The inclusion C.CW (x) →֒ C.(X) induces an isomorphism HCW
. (X) ∼= H.(X).

Proof. Since jn is injective, Im ∂n+1 = Im dn+1 and Hn(X
n) = Im jn. By exactness Im jn = ker ∂n,

and since jn−1 is injective, ker ∂n = ker dn. Together we have HCW
n (X) ∼= Hn(X

n)/Im ∂n+1, which
by exactness is precisely Hn(X).

Now we no longer have to subdivide for a ∆-complex structure like we did when computing the
simplicial homology of T2.

Mg, RPn, for CPn: recall that CPn = S2n+1/ ∼ where v ∼ λv when |λ| = 1. The “upper
hemisphere” of CPn consists of points (ω, (1 − |ω|2)1/2) where ω ∈ Cn ∼= D2n, the boundary of
which corresponds to (ω, 0) with the identification of CPn−1. Hence inductively CPn is obtained
from CPn−1 by attaching a 2n-cell: CPn = e0 ∪ e2 ∪ · · · ∪ e2n. Hence the cellular chain complex
is an alternation between 0 and Z with trivial boundary maps.

Hk(CPn) ∼=

{
Z, k = 0, 2, · · · , 2n

0, else
.

Axioms for homology In general a
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2.2 Tools

Zig-zag lemma The zig-zag lemma provides a way of constructing long exact sequence of ho-
mology groups from short exact sequence of chain complexes.

Theorem 2.4 (zig-zag lemma). A short exact sequence of chain complexes

...
...

...

0 Cn(A) Cn(B) Cn(C) 0

0 Cn−1(A) Cn−1(B) Cn−1(C) 0

...
...

...

∂A

i

∂B

j

∂C

i j

induces a long exact sequence of homology groups

· · · Hn(B) Hn(C)

Hn−1(A) Hn−1(B) · · ·

j∗

∂
i∗

.

Proof. We construct the connecting homomorphism ∂ : Hn+1(C.) → Hn(A.) as follows. Choose
[c] ∈ Hn+1(C.), then c ∈ Cn+1 and ∂Cc = 0. Since j is surjective, there exists b ∈ Bn+1 such that
j(b) = c and j(∂Bb) = ∂Cj(b) = 0. Now since ∂Bb ∈ ker j ∼= Im i, there exists a ∈ An such that
i(a) = ∂Bb. Finally, i(∂Aa) = ∂Bi(a) = ∂B∂Bb = 0, and since i is injective, ∂Aa = 0. Hence let
∂ : [c] 7→ [a], and check that it is well defined, i.e., the choices of [c] and b does not matter.

Bn+1 Cn+1 0

An Bn Cn

0 An−1 Bn−1

∂

j

∂

∂

i

∂

j

i

.

Now what’s left is to check for exactness by diagram chasing.

The zig-zag lemma is most used in space pairs (X,A):

· · · Hn(X,A) Hn(X)

Hn−1(A) Hn−1(X,A) · · ·

j∗

∂
i∗

,

where the connecting homomorphism corresponds with the boundary map: ∂[α] = [∂α].
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For example, one can easily compute

H̃k(D
n, ∂Dn) ∼= H̃k(S

n−1) ∼=

{
Z, k = n

0, else
,

and deduce therefore the Brouwer fixed-point theorem: Every map f : Dn → Dn has a fixed point.

∂Dn Dn

∂Dn
id

i

r =⇒
H̃n−1(S

n−1) ∼= Z H̃n−1(D
n) ∼= 0

Z
id

i∗

r∗

Five lemma Another elementary yet useful tool from homological algebra.

Theorem 2.5 (five lemma). In the diagram bellow if the rows are exact, then γ is an isomorphism:

A B C D E

A′ B′ C ′ D′ E′

α β γ δ ε .

Proof. β, δ surjective, ε injective ⇒ γ surjective. β, δ injective, α surjective ⇒ γ injective.

Excision Excision is another fundamental property of homology, being one of the three axioms.
It is also helpful in calculation. Excision theorem is remarkably easy when X has a ∆-complex
structure with A,X \ Z,A \ Z as ∆-subcomplexes:

∆n(X \ Z) ∆n(X) ∆n(X,A)

ϕ

ϕ is surjective since a basis of ∆n(X,A) is given by subcomplexes of X \ A ⊆ X \ Z. Hence ϕ
induces an isomorphism ∆n(X,A) ∼= ∆n(X \Z)/ kerϕ = ∆n(X \Z)/∆n(A\Z) = ∆n(X \Z,A\Z).

Theorem 2.6 (excision theorem). If Z ⊆ A◦, then Hn(X,A) ∼= Hn(X \ Z,A \ Z) for all n.

Proof. Let U = {Uα}α∈A be an open cover of X. Define CU
n (X) ⊆ Cn(X) to be the subcomplex

generated by n-simplices of X such that σ(∆n) ⊆ Uα for some α. The boundary map inherited
from ∂ : Cn(X) → Cn−1(X) makes (C.U (X), ∂) into a chain complex.

By so-called barycentric subdivision S : C.(X) → C.(X) one can divide simplices so that each small
simplex lies inside some Uα, and by showing that S is chain homotopic to the identity map, make
sense of Hn(C.

U (X)) ∼= Hn(C.(X)) for all n.

Now let Y = X \Z and U = {Y,A}. We have Cn(X \Z)/Cn(A \Z) = Cn(Y )/Cn(Y ∩A), which is
generated by the simplices that lie in X \ A. Hence Cn(Y )/Cn(Y ∩ A) ∼= CU

n (X)/Cn(A). Now we
have the exact sequences of homology by the zig-zag lemma:

Hn(C.(A)) Hn(C.
U (X)) Hn(C.

U (X)/C.(A)) Hn−1(C.(A)) Hn−1(C.
U (X))

Hn(C.(A)) Hn(C.(X)) Hn(C.(X)/C.(A)) Hn−1(C.(A)) Hn−1(C.(X))

.

By the five lemma Hn(C.
U (X)/C.(A)) ∼= Hn(C.(X)/C.(A)). Hence Hn(X \Z,A \Z) ∼= Hn(X,A).
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Equivalently, excision theorem says that if X = A◦ ∪ B◦, then (B,A ∩ B) →֒ (X,A) induces
Hn(B,A ∩B) ∼= Hn(X,A) for all n. To see this let Z = X \B and B = X \ Z for the converse.

Excision theorem tells us that for a “good” pair (X,A), i.e., A ⊆ X is closed, nonempty, and
deformation retract to some some neighborhood V ⊆ X of A (e.g., CW pairs are “good”), then
Hn(X,A) ∼= H̃n(X/A). Otherwise H̃n(X,A) ∼= Hn(X ∪ ConeA,ConeA) ∼= H̃n(X ∪ ConeA) is
always true for arbitrary pairs, where the first isomorphism is obtained by excising the cone tip.

Hn(X,A) Hn(X \A, V \A) ∼= Hn(X,V )

Hn(X/A,A/A) Hn(X/A \A/A, V/A \A/A) ∼= Hn(X/A, V/A)

excision

For example, Hn(∆
n, ∂∆n) ∼= Z is generated by identity maps idn : ∆n → ∆n, a key ingredient in

the proof of Theorem 2.2. When n = 0 the statement is trivial. We proceed by induction on n.
Let Λn be ∂∆n setminus the last face (in the case of a triangle ∆2, Λ2 looks exactly like a triangle
without the bottom side) and consider the exact sequence of the triple (∆n+1, ∂∆n+1,Λn+1)

Hn+1(∆
n+1,Λn+1) Hn+1(∆

n+1, ∂∆n+1) Hn(∂∆
n+1,Λn+1) Hn(∆

n+1,Λn+1)

0 Hn(∆
n, ∂∆n) 0

∂

”good”

to conclude that ∂ is an isomorphism. Let idn+1 ∈ Hn+1(∆
n+1, ∂∆n+1), then

∂idn+1 = [
∑

k

(−1)kidn+1|kth face] = [±idn] (the last face)

which generatesHn(∆
n, ∂∆n) by induction hypothesis. Hence idn+1 generatesHn+1(∆

n+1, ∂∆n+1).

The “invariance of dimension”: if nonempty U ⊆ Rm and V ⊆ Rn are homeomorphic, then m = n.

Mayer-Vietoris sequence wedge sum
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2.3 Other topics

Manifold and the degree of a map

Euler characteristics and Betti number Euler Char: alternating sum of rank
theorem: number of k-cells,
proof: flatness of q, split exact sequence.

eg. χ(Mg) = 2− 2g, χ(Sn) =

{
0, n odd

2, otherwise
, χ(RPn) =

{
0, n odd

1, otherwise
,χ(CPn) = 2n

π1 and H1

Simplicial approximation
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3 Cohomology

3.1 Basic constructions

We dualize the chain complex by Hom(−, G) where G is an abelian group, so that the cochain group
C∗
n = Hom(Cn, G) together with the coboundary map ∂∗n : ϕ 7→ ϕ∂n+1 forms a chain complex:

· · · Cn+1 Cn Cn−1 · · ·

· · · C∗
n+1 C∗

n C∗
n−1 · · ·

∂n+1 ∂n

∂∗

n
∂∗

n−1

.

Construct h : Hn(C;G) → Hom(Hn(C), G) by ϕ 7→ ϕ0, where ϕ0 = ϕ|ker ∂n and ϕ0 : Hn(C) → G.
This is appropriate since ϕ vanishes on Im ∂n+1. h is surjective by the following argument.

The short exact sequence 0 → ker ∂n
i
−→ Cn → Im ∂n+1 → 0 splits, since Im ∂n+1 ⊆ Cn is free.

Hence there exists p : Cn → ker ∂n such that pi = idker ∂n . The extension ϕ0p : Cn → G also
vanishes on Im ∂n+1, and h

′ : Hom(Hn(C), G)
p
−→ ker ∂∗n → Hn(C;G) makes h surjective.

0 kerh Hn(C;G) Hom(Hn(C), G) 0h .

Now apply the zig-zag lemma to the canonical decomposition of Cn and dualize the result:

· · · Im ∂n+1

ker ∂n Hn(C) Im ∂n

ker ∂n−1 · · ·

in+1

∂n

in

dual
=⇒

· · · ker ∂∗n−1

Im ∂∗n Hn(C;G) ker ∂∗n

Im ∂∗n+1 · · ·

i∗n−1
∂∗

n

i∗n

.

We obtain with kerh = coker i∗n−1 = Im ∂∗n/Im i∗n−1 = Im ∂∗n/ ker ∂
∗
n−1,

0 coker i∗n−1 Hn(C;G) ker i∗n = Hom(Hn(C), G) 0h .

Consider the dual of the free resolution 0 → Im ∂n → ker ∂n−1 → Hn−1(C) → 0 of Hn−1(C), it
happens to be that Ext(Hn−1(C), G) = H1(F ;G) = coker i∗n−1. Hence coker i∗n−1 only depends on
Hn−1(C) and G. And since the exact sequence splits, the cohomology Hn(C;G) only depends on
the homology Hn−1(C) and G. To summarize:

Theorem 3.1 (universal coefficient theorem, cohomology). The cohomology groups Hn(C;G) of a
chain complex C of abelian groups are determined by the split exact sequences

0 Ext(Hn−1(C), G) Hn(C;G) Hom(Hn(C), G) 0h .

To calculate the Ext term we have the following tools:

(i) Ext(H ⊕H ′, G) = Ext(H,G)⊕ Ext(H ′, G)

(ii) Ext(H,G) = 0 if H is free (free resolution 0 → H → H → 0)

(iii) Ext(Z/nZ, G) = G/nG (dualizing 0 → Z
n
−→ Z → Z/nZ → 0)

(iv) If H is finitely generated, then Ext(H,Z) is the torsion of H and Hom(H,Z) is the free part.

Calculation examples: torus T , M2, Klein bottle K.
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Related concepts and axioms of homology are generalized to cohomology with little or no difference.
We point out the the following discrepancies:

Firstly, for X =
∨

αXα, we have an isomorphism
∏

α i
∗
α : H̃n(X) →

∏
α H̃

n(Xα) induced by the
inclusions iα : Xα →֒ X. Since Hom(

⊕
αAα;G) ∼=

∏
αHom(Aα, G), the direct sum in homology is

replaced by direct product.

We also ask why is h : Hn(C;G) → Hom(Hn(C), G) an isomorphism? By the universal coefficient
theorem, when n = 0, 1, or if we take R to be a field and consider the homology Hn(X;F ). But
most importantly, we have the following remarkable result:

Theorem 3.2. Hn(Xn, Xn−1;G) ∼= Hom(Hn(X
n, Xn−1, G)).

Proof. Universal coefficient theorem+diagram
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3.2 The additional ring structure

The additional ring structure obtained from contravariance is useful in distinguishing spaces that
the additive structure of (co)homology is incapable of doing.

The construction For ring R, define cup product Cm(X;R) × Cn(X;R)
⌣
−→ Cm+n(X;R) by

(ϕ ⌣ ψ)(σ) = ϕ(σ|[v0,··· ,vm ])ψ(σ|[vm,··· ,vm+n]). Then ∂∗(ϕ ⌣ ψ) = ∂∗ϕ ⌣ ψ + (−1)mϕ ⌣ ∂∗ψ
implies that the cup product of cocycles is a cocycle, and the cup product of a cocycle and a
coboundary is a coboundary. Hence ⌣ induces Hm(X;R)×Hn(X;R)

⌣
−→ Hm+n(X;R), with the

identity element 1 ∈ H0(X;R) that sends every singular 0-simplex to 1R.

Theorem 3.3. f∗ : Hn(Y ;R) → Hn(X;R) satisfy f∗(α ⌣ β) = f∗(α)⌣ f∗(β) for f : X → Y .

One can generalize to the relative version Hm(X,A;R) × Hn(X,B;R)
⌣
−→ Hm+n(X,A ∪ B;R),

by first Cm(X,A;R)× Cn(X,B;R) → Cm+n(X,A+B;R) where cochains in Cm+n(X,A+B;R)
vanishes on sums of chains in A and chains in B. Then Cm+n(A + B;R) ∼= Cm+n(A ∪ B;R) by
barycentric subdivision, and Cm+n(X,A+B;R) ∼= Cm+n(X,A ∪B;R) by the five lemma.

Since cup product is associative and distributive, the cohomology ring H∗(X;R) =
⊕

i≥0H
0(X;R)

is a graded ring that contains a more compact description.

Theorem 3.4. If R is commutative, then α ⌣ β = (−1)mnβ ⌣ α, for |a| = m and |b| = n.

Define a bilinear map H∗(X;R)×H∗(Y ;R)
×
−→ H∗(X × Y ;R) by a× b = p∗1(a) ⌣ p∗2(b) where p1

and p2 are projection from X × Y to X and Y , respectively. This induces, for commutative ring
R, H∗(X;R)⊗RH

∗(Y ;R)
µ
−→ H∗(X × Y ;R) a homomorphism of R-modules a⊗ b 7→ a× b. Define

multiplication (a ⊗ b)(c ⊗ d) = (−1)|b||c|ac ⊗ bd in H∗(X × Y ;R) to give a graded structure, and
also to satisfy µ((a⊗ b)(c⊗ d)) = µ(a⊗ b)µ(c⊗ d).

Theorem 3.5 (Künneth formula). If Hn(Y ;R) is finitely-generated for all n, then the cross product
µ induces H∗(X;R)⊗R H

∗(Y ;R) ∼= H∗(X × Y ;R).

Proof. For CW complexes X and Y define functors hn(X,A) =
⊕

i(H
i(X,A;R) ⊗R H

n−i(Y ;R))
and kn(X,A) = Hn(X × Y,A× Y ;R). Check that h and k are (unreduced) cohomology theories:

(i) homotopy invariance is trivial;

(ii) excision is trivial if we use the alternate formulation;

(iii) existence of the long exact sequence

(iv) disjoint union

Let µ : hn(X,A) → kn(X,A), then µ is natural in the sense that it commutes in the following way

That µ is an isomorphism for CW pair (X,A) follows from a reduction argument. Firstly it suffices
to prove for A = ∅ by the five-lemma. Then proceed by induction on the dimension for finite-
dimensional X. When dimX = 0 the statement is trivial invoking axiom (iv). The inductive step
Xn, which is reduced to (Xn, Xn−1) by the five-lemma. This is further reduced to

⊔
α(e

n
α, ∂e

n
α) by

characteristic map Φ, noticing that Φ∗ is an isomorphism in h and k cohomology theories. Once
again by the axiom disjoint union this is reduced to (enα, ∂e

n
α), which is trivial by the five-lemma

and induction hypothesis.

If X is infinite-dimensional, then it reduces to the finie-dimensional case by the telescope argument.
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Examples

(i) Let M2 be an orientable surface of genus 2, then Hn(M2;Z) ∼= Hom(Hn(M2),Z) by cellular
cohomology, and H0(M2;Z) = H2(M2;Z) = Z and H1(M2;Z) = Z4. Let {αi}1≤i≤4 be the
basis of H1(M2;Z), then αi sends ai to 1R and other generators to 0. One can check that
the vanishing condition ∂∗1αi = 0 makes αi a traversing line between two ai. Applying cup
product we find that α1 ⌣ α2 = 1 on [0, 2, 1] and α2 ⌣ α1 = 1 on the right adjacent one.
This 1 is the generator of H2(M2;Z).

(ii) Let T 2 be a torus, then H0(T 2;Z) = H2(T 2;Z) = Z and H1(T 2;Z) = Z2 = (α, β). On the
∆-complex structure of T 2 we see that α ⌣ β = −(β ⌣ α) generates H2(T 2;Z). Hence
H∗(T 2;Z) = Z[α, β]/(α2, β2, αβ = −βα) = ΛZ[α, β], a result also obtainable by the Künneth
formula H∗(S1 × S1;Z) = ΛZ[α]⊗Z ΛZ[β] = ΛZ[α, β], since |α| = |β| = 1 is odd.

In general, since H∗(Sn;Z) = ΛZ[α] = Z[α]/(α2) where |α| = n, by the Künneth formula
H∗(S2m ×S2n+1;Z) = Z[α]/(α2)⊗Z ΛZ[β] where |α| = 2m and |β| = 2n+1. The distinction
of parity comes from the commutativity criteria.1

(iii) Let K be a Klein bottle, ∂∗1 : α 7→ η + ζ since ∂∗1α(U) = ∂∗1α(L) = 1, and similarly,
β 7→ η − ζ and γ 7→ ζ − η. Hence Im ∂∗1 = (η + ζ, η − ζ, ζ − η) = (η + ζ), taking R = Z2,
and ker ∂∗1 = (α + β, α + γ). Since ∂∗0µ on any of a, b, c is 0, Im ∂∗0 = 0. In summary,
H2(K;Z2) = (η, ζ)/(η+ ζ) = (η) and H1(K;Z2) = (α+ β, α+ γ). Finally let x = α+ β and
y = β + γ, then x ⌣ x(U) = x ⌣ y(U) = 1 and all other terms are 0. Hence x ⌣ x = x ⌣ y
acting on U gives η. We obtain H∗(K,Z2) = Z2[x, y]/(x

3, y3, xy, x2−y2) with basis 1, x, x2, y.

(iv) Hatcher Example 3.16 says that the exterior algebra ΛR[α1, · · · , αn] is the graded tensor
product over R of ΛR[αi] where all αi has odd degree/dimension. I want to make sure that
the antisymmetry αiαj = −αjαi in ΛR[α1, · · · , αn] is guaranteed by the odd degree like this:

αiαj = (1ΛR[αi] ⊗ αi)(αj ⊗ 1ΛR[αi]) = (−1)1·1αjαi

1When |α| and |β| is odd, ΛR[α, β] guarantees αβ = −βα but Z[α]/(α2) ⊗Z Z[β]/(β2) does not. The distinction
becomes irrelevant if charR = 2.
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3.3 Application to manifolds

An n-manifold is a second countable Hausdorff space locally homeomorphic to Rn.

Orientation Let X be a manifold. A generator µx ∈ Hn(X,X \{x}) ∼= Z is a local orientation at
x ∈ X. (X̃, π) is a covering space where X̃ = {(x, µx)} and π is the natural projection. Topologize
X̃: for open U ⊆ X homeomorphic to Rn, π−1(U) consists of (x, µx) such that x ∈ U and µx is
the image of Hn(X,X \U) ∼= Hn(X,X \ {x}}. X is orientable if there is a section s : X → X̃ with
πs = 1X . With this topology the continuity of s implies the compatibility of orientation.

For a connected manifold X, it is orientable if and only if X̃ has two connected components X ⊔X.
Hence if X is simply connected, then it is orientable since it does not have subgroups of index 2.
Also the fact that S2 covers RP 2 tells us that RP 2 is non-orientable.

We also have a more general Z-cover X̃Z =
⋃

k≥0 X̃k where X̃0
∼= X and X̃k

∼= X̃ for k > 0. More
generally, for a commutative ring R choosing units µx ∈ Hn(X,X \ {x};R), we have a covering
space X̃R =

⋃
r∈R X̃r where X̃r

∼= X if r = 0 or 2r = 0 and X̃r
∼= X̃ otherwise. R-orientability is

the existence of a section s : X → X̃R with s(x) is a unit of Hn(X,X \ {x};R) ∼= R.

If R has a unit of order 2, then every space X is R-orientable by taking the identity map; otherwise,
a space is R-orientable if and only if it is Z-orientable, in terms of a double cover X̃.

Theorem 3.6. If X is a compact connected n-manifold, then:

(i) If X is R-orientable, then Hn(X;R) ∼= Hn(X,X \ {x};R);

(ii) otherwise Hn(X;R) → Hn(X,X \ {x};R) is injective and has image {r ∈ R; 2r = 0}.

(iii) Hk(X;R) = 0 for k > n. (Non-trivial since not all manifolds have triangulation.)

Proof.

Hn(X;R) Hn(X,X \ {x};R)

ΓR(X)

∼=

Theorem 3.7 (Poincaré Duality). Let X be a R-orientable n-manifold with fundamental class µ,
then Hk

c (X;R) ∼= Hn−k(X;R) for all k by DX : α 7→ µ ⌢ α.

Proof. We give two proofs, one more geometric and one more algebraic.

Second proof. We appeal to two inductive facts:

(i) Let X = U ∪ V where U, V are open, then if DU , DV , DU∩V are isomorphisms, so is DX .

(ii) Let X =
⋃

α∈I Uα where Uα are open sets, then if DUα are isomorphisms, so is DX

(i) follows from the five-lemma and the the commutativity (up to a ± sign) of the following diagram:

· · · Hk
c (U ∩ V ) Hk

c (U)⊕Hk
c (V ) Hk

c (X) Hk+1
c (U ∩ V ) · · ·

· · · Hn−k(U ∩ V ) Hn−k(U)⊕Hn−k(V ) Hn−k(X) Hn−k(U ∩ V ) · · ·

DU∩V DU⊕−DV DX

δ

DU∩V

∂

.
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All the maps are natural except for the connecting homomorphisms δ and ∂ in the Mayer-Vietoris
sequences. The commutativity of the last square is obtained by passing the limit over compact
K ⊆ U and L ⊆ V in the following diagram, noting that the direct limit preserves exactness:

Hk(X|K ∪ L) Hk+1(X|K ∩ L) ∼= Hk+1(U ∩ V |K ∩ L)

Hn−k(X) Hn−k−1(U ∩ V )

µK∪L⌢

δ

µK∩L⌢

∂

.

Indeed, blah

(ii) follow from properties of direct limit:

0 Hk
c (Uα) ∼= Hk

c (X|Kα) Hn−k(Uα) 0

0 lim
−→α

Hk
c (X|Kα) ∼= Hk

c (X) Hn−k(X) 0

lim
−→α

DUα

lim
−→α

DX

where Kα ranges over compact subsets of Uα.

First let X = Rn, then Hk
c (R

n;R) ∼= R ∼= Hk(∆n, ∂∆n;R), only when k = n. Choose a generator
µ ∈ Hn(∆

n, ∂∆n;R) which is an n-simplex, then DX(α) = µ ⌢ α = α(µ) is a generator in
H0(X;R) ∼= R, for a generator α ∈ Hn(∆n, ∂∆n;R) = Hom(Hn(∆

n, ∂∆n), R).

By (i) DX is an isomorphism for X a finite union of open convex sets each homeomorphic to Rn.
By (ii) the statement also holds for any open X ⊆ Rn, since X is a countable union of such.

Repeat the procedure as above, then the statement holds for X a countable union of open sets each
homeomorphic to Rn. For uncountable union use (ii) and Zorn’s lemma.

If X is compact, then Hk
c (X;R) = Hk(X;R).

As a corollary, the Euler characteristic of an odd dimensional compact manifold is zero. The
orientable case is easy; otherwise let R = Z2 and conclude that dimHi(X;Z2) = rankHi(X;Z) by
analyzing torsion using the universal coefficient theorem for cohomology.
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4 Homotopy Theory

Higher homotopy groups πn is a covariant functor from Top∗ to Set (n = 0), Grp (n = 1), and
Ab (n ≥ 2). Verify the homotopy invariance.

Construction For a based space (X,x0), define πn(X,x0) to be the set of homotopy classes of
maps f : (In, ∂In) → (X,x0) under “fix-end” (ft(∂I

n) = x0 for all t) homotopies. Define sum
operation in πn(X,x0) for n ≥ 2

(f + g)(s1, · · · , sn) =

{
f(2s1, s2, · · · , sn), s1 ∈ [0, 1/2]

f(2s1 − 1, s2, · · · , sn), s1 ∈ [1/2, 1]
,

which makes πn(X,x0) into an abelian group. Alternatively, one think πn(X,x0) as the set of
homotopy classes of maps f : (Sn, s0) → (X,x0) under homotopies of the same form. If X is
path-connected, then the base point is irrelevant.

Theorem 4.1. A covering map p : (X̃, x̃0) → (X,x0) induces πn(X̃, x̃0) ∼= πn(X,x0) for n ≥ 2.

Proof. For f : (Sn, s0) → (X,x0), as Sn is connected and locally connected and π1(S
n) = 0, by

the lifting criterion there exists f̃ such that p∗([f̃ ]) = [f ]. On the other hand, if g ∈ ker p∗, then
p(g) ≃ 0 ∈ πn(X,x0), which lifts to a constant map in πn(X̃, x̃0). Hence g ≃ 0 ∈ πn(X̃, x̃0).

As a result, since Tn is covered by Rn (identifying all the lattice points in Rn) which is contractible,
πk(T

n) = 0 for k ≥ 2.

Theorem 4.2. For each path-connected space Xα, there are πn(
∐

αXα) ∼=
∏

α πn(Xα) for all n,
contrasting to homology groups.

Define relative homotopy group πn(X,A, x0) = [(In, ∂In, Jn−1) → (X,A, x0)] (or alternatively
[(Dn,Sn−1, s0) → (X,A, x0)]) with homotopies of the same form, where Jn−1 = ∂In − In−1, In−1

being the face with last coordinate 0. A map (Dn,Sn−1, s0) → (X,A, x0) = 0 ∈ πn(X,A, x0) if and
only if it is homotopic relSn−1 to a map with images in A.

Theorem 4.3. Let i and j be inclusions and ∂ be the restriction of f ∈ πn(X,A, x0) to In−1 (or
Sn−1), then the following sequence is exact:

· · · πn(A,B, x0) πn(X,B, x0) πn−1(X,A, x0) · · ·
i∗ j∗ ∂ i∗ .

On CW complexes Whitehead, extension, compression, cellular, CW

A CW pair (X,A) is n-connected if cells in X \ A have dimensions greater than n. In particular,
πi(X

n) = πi(X) is an isomorphism for i < n and a surjection for i = n.
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Homotopy excision and Eilenberg-MacLane spaces Excision for homotopy only works for
CW complexes in a certain range of dimensions, as opposed to homology excision.

Theorem 4.4 (excision). Let X = A ∪B be a CW complex where A and B are subcomplexes and
C = A ∩ B is nonempty and connected. If (A,C) is m-connected and (B,C) is n-connected, then
πi(A,C) → πi(X,B) is an isomorphism for i < m+ n and a surjection for i = m+ n.

Two useful consequences of homotopy excision are:

Theorem 4.5 (Freudenthal suspension theorem). If CW complex X is (n− 1)-connected, then the
suspension πi(X) → πi+1(SX) is an isomorphism for i < 2n− 1 and a surjection for i = 2n− 1.

Proof. Since cones are contractible, from the long exact sequence of pairs we obtain πi+1(SX) ∼=
πi+1(SX,C−X) and πi+1(C+X,X) ∼= πi(X). By the same exact sequence (C+X,X) and (C−X,X)
are n-connected if X is (n− 1)-connected. The statement follows from homotopy excision.

Theorem 4.6. If a CW pair (X,A) ism-connected and A is n-connected, then πi(X,A) → πi(X/A)
is an isomorphism for i < m+ n+ 1 and a surjection for i = m+ n+ 1.

Consequently we can calculate πn(S
n) from the sequence Z = π1(S

1) ։ π2(S
2) → · · · where all

maps after the first are isomorphisms. Since maps Sn → Sn of arbitrary degrees exist and degree
is homotopy invariant, π2(S

2) → Z is surjective. Hence πn(S
n) = Z for all n.

Then we can calculate πn(
∨

α S
n).

Finally, the most important calculation is for X = (
∨

α S
n) ∪β e

n+1
β where en+1

β is attached by
basepoint-preserving inclusions ϕβ : Sn →

∨
α S

n. By cellular approximation πi(X) = 0 for
i < n. Consider the long exact sequence πn+1(X,

∨
α S

n)
∂
−→ πn(

∨
α S

n) → πn(X) → πn(X,
∨

α S
n)

where πn+1(X,
∨

α S
n) collapses to πn+1(

∨
α S

n+1
β ) and πn(X,

∨
α S

n) = 0 by cellular approximation.

πn+1(
∨

α S
n+1
β ) is free abelian with basis ϕβ, which is sent to [ϕβ] by ∂. Hence πn(X) = ⊕αZ/[ϕβ ].

Any subgroup can be realized as such.

The Eilenberg-MacLane space X = K(G,n) is the space with the only nontrivial homotopy group
πn(X) = G. The calculation above together with Postnikov tower gives an explicit construction of
K(G,n) with CW structure. Examples of

Theorem 4.7 (Hurewicz theorem). If (X,A) is (n−2)-connected for n ≥ 2 and A 6= ∅ connected,
then Hi(X,A) = 0 for i < n and h : πn(X,A) → Hn(X,A) by [f ] 7→ f∗(α) is an isomorphism
where α is a generator of Hn(D

n,Sn−1) = Z.
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Fibration A map p : E → B have homotopy lifting property with respect to X if for a homotopy
ft : X → B and a map f̃0 : X → E lifting f0, there exists a homotopy f̃t : X → E lifting ft. If
instead of X there is a pair (X,A), then ft : X → B lifts to f̃t : X → E which starts at a given lift
f̃0 and extends a given lift g̃t : A→ E.

(X × {0}) ∪ (A× I) E

(X,A) B

f̃0∪g̃t

p

ft

f̃t

Fibers of a map p : E → B are elements p−1(b) ⊆ E. The map p is a fibration if it has homotopy
lifting property with respect to all spaces X; it is a Serre fibration if it has homotopy lifting property
for disks Dk, or equivalently for pairs (Dk, ∂Dk) by deformation retraction, where k ≥ 0.

Theorem 4.8. Let p : E → B be a Serre fibration, then for a fixed b0 ∈ B and x0 ∈ F = p−1(b0),
the map p∗ : πn(E,F, x0) → πn(B, b0, b0) is an isomorphism for n ≥ 1.

Proof. blah

A fiber bundle over E is F → E
p
−→ B with fiber F such that every p ∈ B has a neighborhood U

for which the local trivialization h : p−1(U) → U × F is a homeomorphism. Fiber bundles have a
local product structure.

p−1(U) U × F

U

p

h

Examples include Möbius band, and Hopf fibration.

Theorem 4.9. A fibre bundle p : E → B has homotopy lifting property with respect to all CW
pairs.

[Hurewicz] If a pair (X,A) is (n − 1)-connected for n > 1, then h : πi(X,A) → Hi(X,A) by
[f ] 7→ f∗(α) is an isomorphism for i ≤ n with α being a generator of Hn(D

n,Sn−1) = Z.
[Whitehead] For a map f : X → Y between 1-connected spaces, the following are equivalent for
n ≥ 1:

(i) The induced πi(f) : πi(X) → πi(Y ) is an isomorphism for i < n and an epimorphism for
i = n;

(ii) the induced Hi(f) : Hi(X) → Hi(Y ) is an isomorphism for i < n and and epimorphism for
i = n.

Let C be a Serre class and X be 1-connected. Then πi(X) ∈ C for all i if and only if Hi(X) ∈ C for
all i.
[mod-C Hurewicz] Let C be a Serre class and (X,A) be 1-connected. If πi(X,A) ∈ C for i < n,
then Hi(X,A) ∈ C for i < n and the Hurewicz map h : πi(X,A) → Hi(X,A) is a C-isomorphism
for i ≤ n.
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